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HEOKJACHYHMH JIAMATHITHHUIl CTPYM VY IUIA3MI
TOKAMAKA 3 EJJEKTPOHHO-LIMKJIOTPOHHHUM
HATPIBAHHSIM :

B.C.Mapuenxo, O.K0. Hanokin

Peawwme

HarpiBaHrg METOROM ENEKTPORHONO LMKAOTPOHHOIO PEIOHAHCY BTOKA~
MAKaxX MPUBOAMTL RO TPeHEpaunii HaATENNOBAX ENEKTPOHIB, IO

“yTikaioTs” Yy NPOCTOpI IIBMAKOCTEN B3NOBX X3PAKTEPHUCTHK
xpasininiinol andysil. Hperidosuit pyx B MarHiTHOMY noni Tokamaka
BMKJIMKAE TOPOIRAJIBHY RPEUECil0 LHMX rapsuMx 3aXONNEHUX eNeKkT-
POHiB, PEHEpPYIOUM TakuM uMHOM OesiHmykuiitHuir cTpym. ¥V pamkax
HaNiBaHANI THYHOT MORENE O0UNCAEHO HANMPIMOK, BEJIMUMHY Ta RPODib
uboro cTpymy. Jing Tunosux pisnis BU-noryxHocti y Toxamaui RTP

(Tonnanpia) mimbicTs CTpymy carace j| |~ 140 A/cm?, mo mMoxe npu-
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3BECTH N0 CYTTEBONO “crunotexns” npodimo g i, SX HACKAOK, RO
crabinizanil nuikononibuMx xoaMBaHs.

HEOKJACCMUYECKMA NTUAMATHUTHBIA TOK B IUIA3BME
TOKAMAKA C JJEKTPOHHO-HHUKIOTPOHHbIM
HAI'PEBOM

B.C. Mapuenko, A.FO.Hanbxun

Peswwme

Harpee MeT0.,0M 3JIEKTPOHHONO LIMKJIOTPOHHOIO PE3CAAHCA B TOKAMA-
KaX MPUBOAMT K TEHEPAUMH CBEPXTEMNIOBBIX 3NEKTPOHOB, “vleraio-
mwux” B NAPOCTPAHCTBE  CKOPOCTEN  BROAbL  XaPaKTEPMCTHK
kBaswinHeitHoi andidyaun. JIpeiichonoe ABMKEHNE B MATHUTHOM Nosie
TOKaMaKa Bbi3bIBAET TOPOMIANBHYIC NPELECCHIO ITHX MOPIYHX 3aXBa-
YEHHBIX JNEKTPOHOB, TEHEPHPYS TAKMM 06pasoM GE3HMHIYKLUMOHHbBIR
TOK. B paMKkax noayaHaaMTHYECKOH MOAE/IH BbIYMCIEHB] HAlIPABIIERHE,
BesumHa u npodub 31010 ToKa. Jag TMnMuHbIX yposuei BU-mom-
HocTH B Tokamaxe RTP (Fo/namams) NOTHOCTB TOKA AOCTMraer
jp~140 A/cM2, uTO MOXKET NPUBECTH X CYWIECTBEHHOMY “yruomie-
HHI0” RPodUAS ¢ M, KaK CAEACTBHE, K CTafMmMaaunn munoobpasubix
Konebanmi.
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field lines

Fig. 3. Poloidal cross-section of the magnetic surface with ¢ = 0.8
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Fig. 5. Contours p = const of Eq. (19) for the Case 2 of Fig. 4

E=x

Here, x = r — r; is the distance from the surface,
S=r.q'/g is magnetic shear, & = mf —n, § is the
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toroidal angle, and g¢;=m/n. The perturbation

- amplitude $(x) » 0 for x » + ® and could be chosen

in the form {(x) = Aexp (- x%/b%). The usual
constant ¢ approximation [9], which is widely used
in the literature, is valid if 5>>w, with w being the
magnetic island width. This approximation breaks

down for low shear. Indeed, the singular points of
Eq. (19) are defined by (see also Ref. {10)]):

[ XSBO 2x
- R ._-b—z—

Ae"‘-z/l’2 cosE =0,
(20)
sinf =0.

For £ = =, two cases are possiblc depending on the
shear value, as shown in Fig. 4. Thus, when shear
decreases {(precessional current, described above,
builds up), the “conventional” hyperbolic point
(x = 0, £ = n) bifurcates to three singular points, two
of which (x =0) are hyperbolic and one (x=0) is
elliptic (Fig. 5. :

Now the preferential heating between highlighted
regions in Fig. 3 becomes possible, because a new “X- -
point” contains its own closed flux tubes, which turn
in the opposite direction to islands formed at the places
of highlighted regions. As a result, thermal instability
develops.

It should be noted that, as a result of abrupt
redistribution of the absorbed ECH power on the
rational surface, the ratio of the absorbed power
density inside a filament to that on the ergodic surface

is given by pg}/pg} = vgl / vgl = 2ngR/md ~ 10
for m<10, ¢g=<'1, R~1m, d~10 em. If we also
assume that thermal conductivity inside the filamcnt
is lower thar: that on the ergodic surface, then a large
temperature variation between filaments and ergodic
zones becomes possible, as observed.in experiment {2].

Of course, the above speculations should be
supported by rigorous treatment, including a self-
consistent solution of the thermal balance and Grad
-— Shafranov equations, where both current and
temperature (pressure) are the functions of a helical
flux in the form (19). It is a scparate problem, which
should be addressed to the future work.
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where I'(x) is the gamma function and the second
equality is valid for ¢<<1.

In Fig. 1, the resultant hot electron current density
profile is shown, calculated for the model profiles

ne(r) = ng (1 — *1a®Y?, To(r) = To (1 - r*/a®)? and
parameters close to those in ECR heating experiments
in the RTP tokamak (Table ) [2].

3. Flattening of the ¢-profile and possibility of the
current/temperature filamentation

The non-inductive hot electron current will modify the
initial current density and rcsulting g-profile. Fig. 2
shows the results for the initial current density profile

j=Jo(1 = r*/a®?, where j, = 400 A/cm? is chdsen to
yield a fixed edge safety factor ¢, = 3.2 and a =3 is
used to give the total current /, = 120 kA. The g-profile

is modified considerably, exhibiting a significant
flattening. Such a flattening results in suppression of
the sawtooth activity [8], which was observed in
experiment {2].

Another interesting consequence of the g-profile
flattening is the possibility of generation of the hot
current filaments, which was the most intriguing
phenomenon observed in [2]. It is not the aim of the
present work to develop the model of such a
filamentation, bui to discuss briefly the reasons for
filaments generation in plasma with the extended
region of ultralow magnetic shear in the central core.

Let the tokamak plasma be heated by the microwave
beam with finite toroidal width d and frequency w
corresponding to the electron cyclotron rcsonance at
the magnetic axis (Fig. 3). Then electrons on the
magnetic surface experience a quasilinear diffusion in
velocity space with the coefficient D = Dyy, where

Do = vorvF.d (6 —n/2) is given in Eq. (8) and the
geometrical factor y accounts for a finiie toroidal width
of the beam and is strongly dependent on the safety
factor g of thc magnetic surface.

If ¢ is irrational, then a circulating electron covers
the magnetic surface ergodically and
y ~A6/2n = d/2rqR (see Fig. 3). The situation
changes considerably when the surface -is rational.
Then magnetic field lines rejoin after some transits
of the torus, so that electrons on that collection of

Plasma parameters
Major radius, Ry Im
Minor radius, @ 20 cm
Electron density on the axis, ng 2.5-10%em™3
Electron temperature on the axis, Ty 2.5 keV
Magnetic field on the axis, By 22T
Plasma current, {,, 120 kA
RF power deposition profile parameter, A 4cm
RF power density on the axis, ,ogl.- 10 W/em®
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Fig. 1. Flux surface averaged hot electron current density for a semi-
analytic model and parameters given in Table
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Fig. 2. Effect of the hot electron current on the g-profile. The full line is
calculated using the currentdensity profite j(r) = f0) (1 — (r/ a)%)>. The
addition of the noninductive component leads to a flattening of the
g-profile with dg/dr = 0

field lines, which is highlighted in Fig. 3, intersect
the resonance surface w = w, outside the beam
location, which means that y= D=0 for these
electrons. Thus, on a rational g-surface, the ECH
power is absorbed on a few field lines only (between
highlighted regions). These regions have a potential
to become X-points of the reconnected poloidal
magnetic flux. However, if magnetic shear is finite,
it is impossible to heat an X-point (and sustain a

sufficient current perturbation &j/j ~-3-6Te/ To)
0732

because of its topology. The sitvation changes in the
case of low shear.

Indeed, in the vicinity of the rational surface, the
magnetic field can be described by the cffective helical
flux function

_.___'!.2_§.B +,~x - §
¥ ==;gBo T ¥ (¥)cose. (19
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then reads
- -]
[t exp(~u?) du
dn, u,
W= Vx i x.
f u? exp (2u3/u) du
u*

X exp (—71:) (H (ugay — u) — H (1 - u,)), an
where ug,, = (2me?/ T,)Y4 and the normalization

constant is obtained from the conservation of the total
aumber of particles.
The last step is to relate u, with the absorbed power

density:

(prsh = 24 02 Q1 =By ok,

from which we obtain the transcendental equation for
u,:

2 (7.7
va u3

- [
J & ¢ du = “’PRFCXP (" 'A‘f),

.y

(12)

where the Gaussian deposition profile was assumed.
In the next section, the model distribution function
(11>, (12) is used for calculation of the prccessional
current carried by hot electrons.

2. Diamagnetic current by strong ECR heating

From the steady state drift kinetic equation [6]
within a thin orbit approximation in an axisymmetric
tokamak with a circular cross-scction, one can derive
a flux surface averaged expression for the bootstrap

current jp of fast particles (see Ref. {7} for the
derivation):
2 x o h '
=2l %2 ofv*[ fihdAduds, (13)
oG o o
where
_ mcuyy Gfo
fi= ~ B 75, 5+ gv, A, n). (14

Here, ¢ and m are the pariicle charge and mass,
respectively, o =vy/ lvyl, h=1+¢cosb, e=r/R, r
is the plasma radius, R is the major radius of the
iokamak, - and By is the poloidal magnetic field

1234

- angle 6, total velocity v and A =

component. The integral in Eq. (13) is over the poloidal
vk /02, with v,
denoting the perpendicular component of the velocity
with respect to the magnetic field. Expression (13) is
found by expanding the particle distribution
f=fw,Ar)+f(vA,60,r) to the first order in
pg/ L<<1 and by making the approximation
VoL Tp << 1, where p,y is the poloidal Larmor of hot

electrons, L is the gradient scale length for the plasma
and wave parameters, 1, is the bounce time of electron
banana orbits. Moreover, 1o obtain Egs. (13) and (14),
the collisional and RF operators have been assumed
1o be independent of the sign of the parallel velocity
component v, (k,; = 0). On this assumption, one can
also conclude that the function g (v, 4, r), which is in-
dependent of 8 and o, vanishes for trapped particles
@A>1-¢).

Consistently with our model Eq. (I1) for f3, the
trapped electron contribution to the bootstrap current
is written as

v .
max fh 4

jB——mcfdedvfleI I?E——v,

I-¢

(15)

where the integral over A covers only the trapped
particles.

With a new pitch angle variable A instead of £, the
full distribution function of hot electrons takes the form

[ An=Cd@A-1)f(v,n), (16)

where f,(v,r) is given by Eq. (11) and the

normalization constant C is determined by the
condition
/2 h
c” 2 dA-1)
2’&,{/2(16; { A S v dl = 1. an

By inserting Eq. (16) in (15 and averaging over
6, the trapped electron contribution to the bootstrap
current becomes

x/2 [ cosé
J B D v
. mc -a/2 f a—ﬁ'v"dv—’-—’
]B - Bo 1/2 or
—:t/2

F(5/4) me == p v
T(3/4) By f or VA

o~
=

(18
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VZ nngetin A *
=Ty AT -
meTe
e’ 22
D=Y ” S VE_VA T (kyp)d (w — lwy,). (6)
! m,

Here, vy, = (2T,/ m,)!/2 is the electron thermal
speed, § = v /v is the pitch angle, E_ represents the
right-handed circu]ary polarized electric field of the
ordinary wave, D is the quasilinear velocity space
diffusion coefficient driven by cyclotron waves at the
resonant location, J,_, is the Bessel function of the

first kind of order /—1, k, is the wave vector

perpendicular to the equilibrium magnetic field, and
p is the gyroradius. The delta function in D requires
that the particles should be resonant somewhere along
their orbits to have a nonvanishing D and is related
to the absorbed wave power. Here after, we consider
a fundamental resenance (I = 1), so that D is energy
independent for millimeter waves (k, p << 1). It should
be noted that the energy dependence in (6) could
appear duc to relativistic mass in w,,. Together with
the finiteness of the Larmor radius, this effect defines
the limiting energy for runaway (see below).

The bounce-averaged quasilinear diffusion operator
takes the form {31]:

)

) ) )]

2 of

1 9
{Q}=;‘2‘§; (va v

£o

19
v GEO
v

(- or
(D” g

where

2
xw (CE_
Dy = {D} = 5— (—B_o—) ;

v (6=0)

0~ v

Cr axes, a resonance was assumed (6, = * /2), and
Y=V is the parallel velocity at the resonance

location. Performing a bounce averaging of the pinch-
angle scattering operator, one could obtain the Fokker
— Planck equation in the form:
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1+ zeg 3'_1531 3 ([vul L - or
+ 2{0/0"} Yo ( v ) go 650 ({ } 60 6-;0) +

1 9 (2 of )
+ Vo Ve |5 = ve ==l ) -
QL%Te | 2
[v i &0 avy
10 [d6=c o ®
v 650 -50 i 3] y.

Strictly speaking, determination of the hot electron
distribution function requires to solve the two-
dimensional bounce-averaged Fokker — Planck
equation (8). Note, however, that runaway electrons
tend to form a “jet” in velocity space along the RF
diffusion path  (see Intriduction). Assuming
f(&,v) = f(v) 8(¢ — Ve), we can evaluate f(v) by pith-
angle integration of Eq. (3). This procedure is widely
used in the theory of minority ion cyclotron heating
[4]. Then one could obtain for the stationary
distribution

v 3 2

1 @ v VUTe 0 [0

i [v2v0 (_Z.‘E) (vf+ —;‘335) + VQL”%‘evzgq =0.
9@
The solution then reads
“  voudu

=Cexp |—f ———|, 10

/ P ( ,{vQLu3+v0/2)

where u =v/vy,, and u, = (v0/2le)‘/3 > 1 defines the
boundary between the Maxwellian  isotropic
background (u < u,) and highly anisotropic hot electron
(u>u,) populations. It follows from (10) that, for
u -~ o, f—>const indicating runaway. Thus, it is
necessary to identify a physical mechanism which cuts
off the runsway distribution at high energies. There
are two possibilities: 1) finite gyroradius cut off
Jo (k, p) = 0; 2) relativistic resonance detuning [5),
which gives ihe maximum energy
8 pax ~ (289 meR)V/2, where eyo~ 7, is the initial
energy of longitudiral =otion. For typical parameters,
the second mcechanism gives a lower linmiting energy
and will be used nereafter. The distribution funciion
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Electron cyclotron resonance (ECR) heating is a tokamak can
produce superthermal runaway electrons having their turning points
located at the cyclotron resonance surface (so-called “sloshing”
etectrons). The drift motion causes these trapped hot electrons to
precess around a torus, thus forming a hot electron current. A semi-
analytic model is used to calculate the direction, magnitude, and
profile of this current. For a typical high power central ECR
heatin  a hot electron current density jj~ 140 Afcm? is found
which is peaked at a radius ~ RF power deposition where it
enhances the local current density. The effect of the hot electron
current is to flatten the g¢-profile within the RF power deposition
region. If this radius is comparable with the ¢=1 radius, this
results in sawtooth stabilization. Moreover, low magnetic shear is
favourable for formation of hot current filaments, which was
observed in experiment.

Introduction

As is well known, the MHD stable operation of tokamak
discharges requires active control over the current
density profile [1]. There are several possibilities for
the current profile modification:

1) off-axis current drive with injection of neutral
beams, electron cyclotron waves, and/or lower hybrid
waves with finite k) (longitudinal mode number);

2) discharge with high bootstrap current fraction
achived by the pellet injection into the central core.

In the present work, an alternative possibility is
considered, which is based on the generation of the
hot, highly anisotropic electron population during on-
axis electron cyclotron heating with k= 0.

For a sufficiently high RF power, a significant
fraction of electrons runs away along the RF diffusion
path in velocity space. The equation for the RF
diffusion characteristic reads

e ~—puw =consi=0, fore>T7, A

where e,u are the particle energy and magnetic
moment, respectively, w is the wave frequency, T, is
the temperature of background electrons, which are
assumed to be isotropic. According to (1), the
distribution fanction of runaway electrons takes the
form f{(e.u) =0 (e — uw) F(e), which means that
banana “tips” of these electrons accumulate on the
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resonance surface = w,, where w,, is the cyclotron
frequency.

In the limit of a negligible poloidal Larmor radius,
parallel motions on the inner and outer branches of
the banana orbit exactly cancel in one orbital period.
However, with a finite poloidal Larmor radius (a few
millimeters for hot electrons considered below), these
motions do not longer cancel and, as is well known,
the orbit as a whole precesses around a torus.
Considering the whole ensemble of heated runaway
electrons, this motion gives rise to a net diamagnetic
current of hot electrons in the direction having the
same Sense as the plasma current.

In the next section, the function F(e) is determined
by solution of the Fokker — Planck equation integrated
over the pitth angle. This model function is then used
in Sec. 2 to calculate precessional current for a
particular set of parameters close to ECR heating
experiments in RTP tokamak [2]. The effect of this
current on the g-profile is considered in Sec. 3, where
the possibility of the’ current/temperature filaments
generation is discussed briefly.

1. Energy distribusion of hot electrons

The Fokker — Planck equation for electrons has the
form:

offot=C(NH+0C{ )
where C and Q represent the Coulomb collision
operator and quasilinear scattering  operator,
respectively:

3 B
) =5% (33—‘-) a+ zcﬁ)ﬁag(l -gz)aigf-+

3 2
18 2 [YTe) (., . YTeof
+vzau” Vo(p) (vf+ 2 ai), @
1 @ af
=y, D—,
0] s, P, @
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