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The dynamics of nonlinear drift waves interactions is shown 10 be
sirongly modified wher® interaction, energy strongly exceeds the
cigen wave energies. The conditions of modificd explosive instability
saturation due 10 conveclive wave losses from the wave coupling
region have been found. The possibility of solitons and other
nonlinear wave structures formation during the nonlinear wave
coupling in plasmas near marginal stability boundary is shown.

Density n(r) and temperature T(r) profiles in plasma
of tokamaks often nearly satisfy conditions for marginal
stability of strong reactive unstable modes such as
the ion temperature gradient driven mode, or n;-mode

(mi=dInT/dlnn) [1]. Below the linear stability

boundary there still exists rather high level of
turbulence, so called “subcritical turbulence”. In [2]
the nonlinear explosive instability due to interaction
between modes with positive and negative energy was
proposed as the driving mechanism for the turbulence.
As shown [3 — 5] the character of nonlinear wave
interaction radically changes near the stability bound-
ary. When all interacting modes are “ zero-energy
modes” characteristic nonlinear interaction time Iy is

the smallest [4,5 ). Then mode energy exchange during
nonlinear interaction greatly exceeds “own” energies
of modes. Other important feature of nonlinear wave
interaction near stability boundary is the following.
The possibility of explosive instability does not depend
on signs of “own” wave energies as well as on signs
of interaction matrix elements if iwo or three waves
from resonant triad are “zero-energy waves” [3,6].
In this paper we shall consider spatial-temporal
evolution of resonantly interacting drift waves near
marginal stability boundary. It will be shown that some
coherent structures can be formed as a result of this
interaction.

In slab geometry with all inhomogencities (density,
temperature and magnetic field) in the radial (x)-
direction we use the fluid model proposed in {7]
governing ion aand electron densities, electrostatic
potential and ion temperature evolution. In this model
electrons are assumed to be adiabatic and ions are
assumed to move perpendicular to the exiernal
magaetic field in wave motion. Nonlinear coupling of
ni-modes is determined mostly by the nonlinear
E x B drift (so called vector nonlinearity). (Taking for
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_ simplicity T;=T, after Fourier transformation the

" basic set of 2quations s the form ([7], (8a), (8b)):
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where T, , ®, are Fourier components of ion

temperature and electrostatic potential perturbations
which are normalized as follows
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Dimensionl_ess_ time and space coordinate are
»wel,r>rlp, wi=cd L, ps=c/Q, Here
we have used notations
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In the linear approximation one can put o,
T.~ exp |- iw,] and obtain the linear dispersion
reaction. for x; modes
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The curve qf-’c,(e,,) gives the marginal stability boun-

dary for %; mode. If <n§’c, these modes are linearly
stable.

For weak nonlinearities one can obtain from (1) the
set of cquations for amplitudes &, by, Dy, of three
interacting -waves satisfying resonant conditions

cwgtwg twg=0, k+ Kk +ky=0in the region of
linear stability:

Ly = Vi 1, Pi, P, »

Lq)k = szkqu)zq)zl y (3)
where
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The signs =+ in-the first term of operator L

corresponds to modes ‘”k or wg.

Sufficiently far from marginal stability boundary or
for sufficiently small wave amplitudes:

tosplx/z( ?cr_ﬂi) >>1 or ’0(‘”}: -—w;) > 1, (4)
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' the temporal development of instability was considereq

before [2].
In other limiting case

fo (w;[ - w;) <1 &)

the temporal development of nonlinear instability js
described by

&’ Ve . @t @

7—_ kkyky “ky Tky - ' (©)
For equal signs of matrix elements: ka ky v, Kyl
Vikk, the system (6) has simple solutlon descnbmg,

modified explosive instability which was found in {4,5);

6

’
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(I)kl , <I>,‘2 have similar form. If one of the matrix

element, say Vik,k,» is of opposite sign, the system
(6) after normalization can be written in the form

2 d*c d*c
d¢ iCas Wz—l=—C*C§, 722=—C'CT. a

da

It also has exact solution, describing “explosion” [6]
(see Fig.D)

V168 &8

V83 o~ =Cy= ®)

C=(‘o D aa “

where a and f — constants.

For any other initial values of Cy0), C';(0),
#:0) , ¢'(0) solution of (7) tends to self-similar
solution (8) asymptotically when ¢- ¢, (see Fig.2).
Characteristic feature of such solution is that phases
lp;l grows with time as well as wave intensities. The
system (7) has also solutions with constant phases.
They have been found numerically (see Fig.3). The

most simple one can be estimated as C ~ af¥ 3,

C, =Cy ~V8d/3t 3 cos (3\/3?’3/5 + 8y), where a,
0y are constants.

Temporal description of instability is valid only if
we can consider wave interaction with amplitudes which -
does not depend on space coordinate. In reality this
is not so and we should consider spatial-temporal prob-
lem 1o describe evolution of wave amplitudes. In this -
case one can obtain obvious generalization of the .
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Fig.l. Exact “explosive” solution of the system (7):
¢ -02373731,_ = — 3.4641, w‘ll-o pz‘

system (6) which follows from (3) under condition (5)

)
&, = @, b, 9
) k= Ve & P P, o

and similar equations for d)kl and <bk2.

As shown in [8] for given boundary conditions at
the x = 0 of the interval (0, L) steady state is es-
tablished through time L / min [wi/ky | if L is less than
. the “explosive length” for the corresponding “spatial”
. problem of the system (9) and if the signs of matrix
elements in (9) and signs of wave velocities wy/ky are
! the same. Now we have checked that it is true for
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=0

any signs of matrix elements Vi 4, and for equal signs
of wy/ky, (sce Fig.4).

We have shown also that system (3) may describe
solitons moving with constant velocity U in the direction
of drift wave propagation (y) To find it we choose
®y(x,y,?) in the form

fb ‘I‘ exp((sky+qk )) ,

where n =y+ Ut U, 54, g4 are constants which will

be determined below. First of all we require
se+ s +5,=0, QG+ +a,=0. (10
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Fig.2. Asympiotic “explosive™ solution of the system (7): Cl = ll =C'2l =0, C| =1, (,1| =C2I -2,
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Fig.3. “Nonexplosive™ solution” of the system 17): C|’=O=C’l'=u= cy '_0—(, 2':—0 1, C’Iz—o C2L=o 2, ¢ f=0"= 1,
WI =1, Y"il =0
=0 =0
From (3) we obtain following set of equations for 22 s
g . quations for tuist  kPuusk 5 L o ool _
ki @ a x9k Tk Y& S| Fk T
Ay :
| (U—u)| 4, Ju U —u)s,
+ 7 — 2 + v
ak (I a/\' kk]kZ * -
7 = W W an
i a; "2
kék(U—uk) dy,
M Py M Y R T
k " and similar equations for W, , W, .
£ . 1 2
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d¥

Then we require that coefficient before dr/k vanish
ug(U — ) 1 9
5/\.[1 - o :I = Lylil t3 a (U - “k)]

and similar equations for kv Skye

The first condition (10) gives cubic ‘equation to
determine U. To simplify it we assume that
(U = up) ug/ a << 1, - u/()z/(lk <1, 8p<kuy
which are very easy to fulfill near stability
boundary.

Then we can obtain

' 2 2

H% ukl ll}k.2
ky =Rt k= 4 k2
a y (l‘.] - (lkz

U=

P S
a, Wa

Y ay k £, (12
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Fig. 4. Saturation of explosive
instability: il mp = 0-015,
64’1/at|l=0 . = 0.0015, dﬂ-ll k=0~
=006, ad/ax|, _,= 0012

l.l)k/ky = 095. wkl/kly = l, wkz/kzy =
=09

We intend o reduce the system (11) to the more
symmetric one:

2w, Vik, k,
——— _ ()
T AW =——W W,
2
dWy, Vi
dn 1 @ 2
2w kykky
22w, =2y (13)
dn? 2 @
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Taking into account the second equation (10) we

obtain

2.2 22
|udi2  uickty  upky
A= AR ¥

' 2 .2 .2
+ ky - k[}‘ - I»2). . (14)

0] —

Gy [en . akz

So we are able to determine all unknown values U,

Ski, qki.

The system (13) can be written in the most
symmetric form for functions

/2
Vigk, Vieypk W, si Vick & if all si

Ry = — | 'k sign if all signs
k akzakl ag

Vikiky  Vigkok " Vighe
f 12 , 2 , 21 are equal. We have for

ag ax, ag,

Xy
d%
% —Ang+up x =0 (15)
dy 17K

and similar equations for X ukz . The soliton solution

of KdV equation (15) is well-known:

_ _ _ 3
xk—xkl—xk = y

2 2 AI/Z
2cosh [T(y + Ut - ’70)}

when U and 1 is determined by (12) -and (14), 7,
is a constant. So for the drift wave amplitude W, we
have: '

1/2
Vik k . 4
W, = — sign 12 L2 X
@ N Vi kokVigk k

32
2 cosh? [L,z-(y + Ul -1 )}
2 o

X

and similar expressions for W, ., W,
1 2

Thus we have three bounded envelope solitons
moving with the same velocity U (12) which is of order
of phase velocity of drift waves. One can also find
periodic nonlinear solutions of the system (13). We
see that modified explosive instability can be stabilized
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by forming spatial nonlinear structures which would
conslitute structural elements of subcritical turbulence,
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OCOBJHMBOCTI B3AEMOIT HEJHHIMHUX NPEHDOBHX
XBUJIb ¥V TUIASMI NOSGAU3Y TPAHULI JHHIHHOT
HECTIAKOCTI

T. 0. fasudosu, O.10. Hausxin

Peazwme

HNokazano, 1o auuasmika enisiinol saaemonii apeidosux xpuab
CYTTCHO IMIHIOETLCR, KOMNM CHEPris B3aeMORil nepessuiye BJIACHY
CHEPrito xsub. 3UAFREHO yMOBH HACKUCHHA MOMIDIKOBANOT BHBYXO-~
80T HECTIAKOCT BHACAIZOK KOUBEKTHBHOTO BHHOCY XBuL 3 004acTi
Bacmonii. Jlosemena MOMUIMBICTL YTBOPCHHS COMITOHIB Ta iluumx
CTALIOHAPHUX XBUILOBUX CTPYKTYP Nl 4AC NEeinifiHOT RIAEMONIT No-
Gamay rpamuui Ainifinoi wecTifikocTi naasmu.

OCOBEHHOCTH B3AUMOJIENCTBHS HEJMHENHDBIX
JAPENU@OBLIX BOJIH B ITHA3ME BRJIU3M FPAHUILIBI
JHHEWRHON HEYCTONYUEOCTHU

T. A. fuewidosa, A. 10. Manoxun

Pcawme

Tokazano, UTo AMHAMUKA HEAMHEITHORO BIAMMORENCTBHS apendoneix
BOUI CYHIECTBCHHO HIMCHICTCS, KOTAA JHEPrrs B3AMMOACIACTEUY npe-
BLUNACT COBCTBEIHYIO IHEPrio BOMH. HAKBREHLl YCAOBMS HACKIEHNS
MOAHGULUMPORANIION BIPLIBHOIN HEYCTOMUMBOCTH BCICACTBHE KOHBEK-
THBUONO BLIOCA BOJIH M3 001ACTH B3AKHMOACHCTBIA. [Tokazana Bo3MOXK-
HOCTL O0PE30BAUMS COMMTOHOB M APYPHX CTALMOHAPHBIX BOAHOBLIX
CTPYKTYVP (PH HCAMHEHHOM BIAUMORENCTBIM BOIM3M rpansiiLsl Anicii-
HOM HCYCTORUMBOCTY NNAIMBI.
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