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ABSTRACT. The toroidicity induced shear Alfvén eigenmode (TAE) instability driven by the fusion alpha particle
pressurc gradicnt is found to be stabilized in the presence of a resonant RF field with & = &y, -v, ., where Q is the
frequency, k, the wavenumber and v, . is the e particle velocity component perpendicular to the magnetic field. This kind
of resonance could occur during lower hybrid (LH) current drive in an ignited tokamak plasma. The RF electric field
strength that is needed for stabilization is available from modern RF power sources.

1. INTRODUCTION

One of the major issues in the alpha particle physics of
tokamaks is the low n toroidicity induced Alfvén eigen-
mode (TAE) instability driven by the « particle pressure
gradient and the resultant « particle transport [1-5]. The
main results of the previous studies of this problem are
that the volume averaged « particle 3 threshold for TAE
instability is small, on the order of 104, and that for a
relatively low fluctuation level with 8B,/B, = 107* the
« particle loss time is comparable with, and even shorter
than, the « particle silowing down time. This is the reason
that the problem of efficient suppression of this instability
seems to be important.

Several damping mechanisms of TAE modes have
been considered in the literature. Théy are: electron
Landau damping [1], ion Landau damping [4], continuum
damping [6] and collisional damping on trapped electrons
[7]. The last three mechanisms taken together could
increase the o particle 3 threshold by more than an order
of magnitude. In the present work we consider an alterna-
tive damping mechanism that should arise in the station-
ary tokamak reactor when the plasma current is driven by
lower hybrid (LH) waves, which is the most promising
current drive scheme at present. It is well known [8] that
a particles could interact with LH modes via the trans-

verse Landau resonance, vy, = U,,, where vy, and
v, . are perpendicular to the equilibrium magnetic field
velocity components of the LH wave phase and the
« particle, respectively. Such interactions have been
observed recently during LHCD experiments in JET [9].
The interaction results in quasi-linear diffusion in the
resonant part of the « particle phase space. The quasi-
linear diffusion operator modifies the « particle response
on the Alfvén perturbation in such a way that the TAE
mode becomes heavily damped for moderate values of
LH power. This damping mechanism has been reported
previously [10], when the continuum Alfvén waves insta-
bility on the trapped « particles was considered. Here we
are extending the theory to the (m = —2,n = —1) TAE
instability driven by resonance with passing o particles.

In the following section, the drift kinetic equation for
the non-adiabatic perturbed « particle distribution is
solved in the ‘banana’ regime (rq. < ewsy < Wppias
where vy is the characteristic frequency of « particle
scattering due to quasi-linear processes, € = a/R is the
inverse aspect ratio, w, is the Alfvén frequency and
Wpiye 15 the o bounce (transit) frequency. The correct
« particle response driven by the toroidicity induced
shear Alfvén cigenmode is derived in Section 3. The
TAE stability analysis that uses perturbation theory is
carried out in Section 4. Conclusions are given in
Section 5.

2. SOLUTION OF THE DRIFT KINETIC EQUATION

As was mentioned in the Introduction, the quasi-linear diffusion effect on the trapped « particle perturbative
distribution in the presence of continuum shear Alfvén wave has been considered in Ref. [10]. Here we briefly repeat

that calculation for the passing « particle response.
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The drift kinetic equation for the non-adiabatic perturbed « particle distribution can be written in the form
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where £ is the perturbed distribution of trapped (untrapped) o particles with fJ, corresponding to v) = 0, &, is the
mth harmonic of the radial component of plasma displacement £ = exp (im@ — ing) &,,, m, n are integers, S = +1, 8,
¢ are the generalized poloidal and toroidal angles, respectively, w, is the magnetic drift frequency, Cqy is the quasi-
linear diffusion operator, F, is the a particle equilibrium distribution, ¢, = v:/2 and {A) denotes the bounce or transit
average of A and is given by
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where 7y, is the bounce (transit) period of trapped (circulating) o particles.

Equations (1) and (2) represent ordinary difterential equations in velocity space for three « particle species which
should be solved and matched across the separatrix. For typical parameters of tokamak plasma and external RF field the
‘banana’ regime (vq. < (r/R)w,) is realized. In this regime a narrow (|Avy/vy| < (vouR/rwy)"?) boundary layer forms
at the trapped-untrapped boundary in velocity space, so that only « particles from this layer are significantly scattered
by quasi-linear processes. This problem is similar to that considered in Refs [11, 12], where the trapped electron modifi-
cations to tearing [11] and Alfvén [12] modes due to Coulomb collisions were calculated. Hereafter we follow the same
procedure in the calculation of the « particle response to the TAE perturbation in the presence of a resonant RF field.

The asymptotic expression for the bounce or transit averaged quasi-linear operator near the separatrix is given by
Ref. [10] as
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where ¢ = r/R, and E_, @ and k; are the RF electric field amplitude, frequency and wavenumber, respectively, while
u = v3/2B and B = By(1 — ecosf). The general solution of Egs (1) and (2) could be presented as the sum of a
particular solution of the non-homogeneous equation and the general solution of the homogeneous one. In the ‘banana’
regime the zero order (vo. = 0) non-homogeneous solution is a good approximation, while the homogeneous part
represents the contribution of quasi-linear diffusion to the response. Assuming that the resonances are possible only with
passing « particles (i.e. neglecting the (wq) terms in Eqgs (1) and (2)) one could obtain the homogeneous equations in
the form

1  \ o _ )
(OJ gL K(K) 6,(2 K(K) 6K2> f'a O, k- <1 (4)
ky + — ] {u|y — v L9 K(x _1) | f k2> 1 (5)
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where vor = 2¢'? (e, /my)? |E_|? (Qko)* (ev?) 7 (kgv? — w%)‘”l, 2 = [6 — pBo(l + €))/2euB,, ¢ = v*/2 and K(x) is
the full elliptic integral of the first kind.
With the change of variables

I, k* < 1
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960 NUCLEAR FUSION, Vol.35, No. 8 (1995)



ALPHA PARTICLE DRIVEN TAE INSTABILITY SUPPRESSION

where y, = (1 — «%)/16 and y, = (1 — «?)/16. Equations (4) and (5) become

d*f, 1 df,
+
dr? rhny(r) dr

t+5=0 (6)

Typically, |Iny| = !|In(rg /256w)| >> 1, so that an approximate solution to Eq. (6) that decays to zero away from
the separatrix is f, = exp (i). As a result, the lowest order solution to Egs (1) and (2) is

fo = 10+ At - (7)

where £ is the particular solution (for vy = 0) and the constant A represents the three constants A, and A . to be deter-
mined by matching.

In this work we restrict our consideration by the condition wy; < @ < @y, so that both magnetic drift and bounce
harmonic resonances are excluded. The second inequality means that the trapped « particle distribution is an approxi-
mately even function (the odd part of the trapped « particle response is higher order in the bounce harmonic expansion).
Thus, to determine the three constants 4, and A ., both the even and the odd parts of the distribution function £, plus the
derivative of the even part of f, must be matched across the trapped/untrapped boundary at 7 = 0. This matching proce-
dure is similar to that carried out in Ref. [11] for the trapped electron modifications to tearing modes in the limit of weak
Coulomb collisions. The expression for A, obtained by matching is given by

Q+ A+ M)A, =20 - fD) + (L2 - DAL (3)

where
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In the next section using solution (7), (8) we derive the « particle response driven by the toroidicity induced shear Alfvén
cigenmode in the presence of a resonant RF field.

3. ALPHA PARTICLE RESPONSE
In order to incorporate the contribution from « particle quasi-linear diffusion to the basic eigenmode equations, we
follow the procedure described in Ref. [13], where the « particle kinetic response to the global Alfvén eigenmode (GAE)
was calculated in terms of the susceptibility tensor ¥,

Uo: = d3 v vdcx Vfot = vlju = VJ. [(OJ/47I.'1) irx E] (9)

with E as the mode electric field. Substituting (7) and (8) into (9) one can obtain for the mth harmonic of 3",
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where

8. = 8o T./B%, | dF, = 1.2 = 2Tim,, w., = " [«¢ ) 41N
r \e,B dr

H(v)) is the unit step function and integration is carried out over the passing particles. Performing the integration over
pitch angle, Eq. (11) reduces to
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where we use approximation v2/2 + vi = v2/2 = & because the main contribution to the pitch angle integral comes
from the thin boundary layer around «> = 1. The integration limits in (12) are defined by the intersection of the
trapped-untrapped boundary vy = v, (2r/R)"? with the boundary of the quasi-linear diffusion region in velocity space
(region 3 in Fig. 1). Tt should be noted that the expression between the final pair of square brackets of (12) is negative
definite provided A% > 0, which corresponds to mode stabilization.

2 T T T T
VLIvaO

VHIV‘,Q

FIG. 1. Velocity space (v ,v)) divided into three regions. The
resonance line v, = /k,, separates the wave-particle interaction
region 3 from regions I and 2 where the interaction is absent. The
hatched regions are boundary layers which are the predominant
contributors to TAE damping.

With the help of Ampere’s law and the quasi-neutrality condition one can obtain the following two coupled second
order eigenmode equations for the poloidal electrical field E,, which include kinetic instability drive due to the
Cherenkov resonance with passing particles [1] and dissipation due to quasi-linear diffusion in the external RF field (all
the other damping mechanisms are dropped):

2 2
& (O iy = A = a2)) S - 28RS et = (L = K - ) - CE
dr vy dr dr va

A 2 .4
+ r[(“’—z) — A, — mBly — (ALY — m(DS,ﬁ)'B E, + ¢ d%(“’ rd mﬂ) =0 (13)
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where ¢, = 3a/2R, the primes denote radial differentiation, k,,, = (m — ng)/gR is the paral]el wavenumber with
a and R the minor and major radii, respectively, and g the safety factor. The quantities A, = @.., — @, and
B,, = Q,, + O, are derived in Refs [1, 13], where @, ., is given by

ﬁa Tw | : vl ) 2 af?a @ om
Oni1 = — l5R? W j d*v ZL ~T, e w F,) 0w — Kjugvp) (15)

and, in addition,
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It should be noted that hereafter we ignore the LH power deposition profile and put |E_|?(r) = const. Treating the
kinetic terms in (13) and (14) perturbatively, in the next section we analyse the stability of the (n = —1, m = —2) TAE
mode in the presence of an external RF field resonating with « particles.

AT (8,r) = {1

LS

4. TAE STABILITY ANALYSIS

We begin with the definition of the zero order TAE mode structure. This is an ideal MHD limit (all kinetic terms are
dropped). The result is shown in Fig. 2 for n = —1, m = —2, ¢, = 0.375 with a constant density profile and
q(r) = 1 + (r/a)*. It reproduces well the original result of Ref. [1] with wy =~ 0.93 (|ky,val)|,=32-

Next we consider the kinetic effects of alpha particles on this mode. Exploiting the self-adjointness of the coupled equa-
tions, we obtain the imaginary part of the frequency change due to the kinetic terms as follows:

E bml + me + bm3
Y Vo m

Y o_ Yk (16)
Y i + dua) + dy
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FIG. 2. Radial profiles of the dominant poloidal harmonics for the
n = —1 TAE mode, for a safety factor profile q = 1 + (t/a)’ and a
constant density profile.

where

bml - A QL) dr
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and 7, is the Alfvén velocity normalized to its value at the centre of the plasma. To calculate the growth rate for the
TAE mode using Eq. (16), we nced the expression for the equilibrium distribution F,,. The latter satisfies the equation

18, Sa(1)
- + U)F, + (Co{F.}) +
Tslv?' Jv (U Uc) o € QL{ or}> 4 U

6(v — v =0 (17

where the first term describes o particle slowmg down on the background plasma with 7, the slowing down time and
v, the critical velocity, and the third term represents the « particle source due to DT reactions with vy, = (2&,9/m,)""*
and &, = 3.52 MeV. Equation (17) de solved in Ref. [14], the solution could be written in the form (Fig. 1):
in region 1 (|x = vy/v| > x, = (1 — v, /v, v, = Qky,)

FPw) = H(vy — v) (18)
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in region 2 (|x| < x,)

3
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Figure 3 shows the growth rate (normalized to the real frequency) as a function of the alpha particle density scale
length L, with 8, = B,(0)exp(—r?/L2) for the different values of vgilwo. The parameters chosen are the following:
a/R = 1/4, p.o/a = 0.05 with p,, the alpha Larmor radius, v,y = 2va, 8,(0) = 1%, T, = 10 keV, n, = 10" ¢cm 3 and
Q/ky vy = 27Y2. Tt should be noted that wy ~ v,/3R while the alpha transit frequency w,, =~ v,/gR ~ v,/R, so that the
condition @ < wy,, which was used in Section 2, is satisfied for the given set of parameters.

0.0107T———— ——— 0.010
40.005

0.000

1

‘ -0.005
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FIG. 3. Growth rate (normalized to the real frequency w,) for the
n = —1 TAE mode as a function of the alpha particle density gradient
scale lengrh Jfor different values of UQ )fwg: A, O; B, 9 x 1077
C,2x 107D 4 x 107 E 6% 10° F, 9 x 107,

5. CONCLUSION
As one can see from Fig. 3, suppression of the instability occurs for vg)ﬂ/wo ~ 5 X 10’3, which is an order of

magnitude agreement with an analytical estimation (see Appendix). With the definition of u and Qlky vo = 2712 one
could obtain for the RF field threshold amplitude
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(E [Viem]}? = 107 (w) [Hz?]

which for wy ~ 100 kHz and @ = 2.5 GHz gives E;, ~ 5 kV/cm. The chosen value of Q/k;, corresponds to the
refractive index N, = 32, which for Ny = 1.6 gives

- N

L

Eu EL = 250 V/cm

Then one could obtain for the required slow mode power flux

cN,
0

So ~ |Ey)|2 = 4 kW/em?
which for an antenna with a surface area of ~ 10* cm? gives a total LH power Py ~ 40 MW. This value is an order
of magnitude lower than that needed for continuous operation of a reactor [15].

It should be noted that we use the simplest form of the equilibrium distribution F, (18)-(20), which is valid if one
neglects the prompt losses enhancement due to quasi-linear diffusion in an RF field. This problem was considered in
Ref. [14], where it was shown that prompt losses enhancement is practically independent of the RF power because the
height of the “plateaw’ formed in the resonant part of velocity space does not depend on vg)ifsl for Vg)ﬁ'rsl > N

The final remark is that the solution of the drift kinetic equation (7), (8) is valid in the zero orbit width approximation.
The general solution of the linearized collisionless (and free from RF induced quasi-linear diffusion) drift kinetic equation
for global MHD modes, which includes finite orbit width effects, was obtained recently in Ref. [16], where it was shown

that the finite orbit width had a stabilizing effect on the TAE mode.

Appendix

To obtain an order of magnitude estimate of the suppression threshold, we first perform the spatial averaging of
expression

g = (" L 2y (L Ly A
w 2+ A(e,n + A0 | A, AL AT A% A,

+i 1_L + i_ 17 &
A A? AL ar/) A

which contributes to (12). Using approximation

- 21z 12712
AT e = |1 % dr[m £ 1 — ng(r)] ! 256w\ (er/R)! e - o
q(r) oL wR oo

and letting x = (r/a)"?, one could represent the spatial integral in the form

1 I dx 2 2 2
{ de - S 172 1/2 1/2 + 1/2 - 312
v ‘vl {1+ 2} +{1-2 1+ = 1 - 1+ 2
A A A A A
2 2 (0~ XA (4 + x/a)”?
B 3 + 2N\ 172 B 3/2 - 3/2 (22)
L Lo Lo X
A A? A A
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{ 256w @R
A~ —1In B
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The branch points in (21) occur for x < 1. Thus taking into account the fact that 8, ~ exp(—x*L}), L, < 1, one
could obtain an upper estimate for the suppression threshold by extending the upper integration limit in (22) to infinity,
then observe that |H| ~ |x?| as x — oo and that the branch points in H occur at x = 0 and x = A which for Imw > 0
is above the real x axis. As a result, the path of the x integration can be deformed to be down the imaginary x axis to obtain

\

Consequently, letting iv = x/A along the deformed path x

where | +

4A1/2 (j
1

o

|
Jo

H dx

-0i

ilx| gives

2

t gives

® (f4 _ l)lf?_ (IZ _ 1) ([4 _
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2
o

d
23172 172
0 2[1 + (w + 1) :| (1 + yE)SIZylf‘:z

2

iv = (I + y)'" exp(Litan'y) has been used.
Letting y = sinh ¢ with exp (¢/2)

1)3/2 t

¢t + D2t + 1)

i 2& (t + D2 + 1)?

dt+4§

o (I4 _ ])1/202 — 1)t2
L@+ D+ )P

dt) = 3A2

Thus, a rough estimation for the TAE growth rate is (the contribution from K, ;; is the most pronounced)

1/2
s (75) ()
w PoL

which gives for the suppression threshold »q/w

=4

factor of 2.

Y
[2]
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[3]
[6]
(7]
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19]

(10]

102, This value agrees with the numerical result within a
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