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The influence of nonuniform poloidal and toroidal background plasma flows on the spatial structure
and growth rate of the electrostatic electron temperature graddi@) mode is investigated in the

linear approximation. This derivation includes the ballooning mode formalism and a more recently
developed version of the direct method by Taylor and Wildelasma Phys. Controlled Fusi&8,
1999(1996)]. It is shown that the growth rate of the ETG mode is not changed significantly by flow
shear. However, it is found that the spatial structure of the ETG mode depends crucially on the
derivative of the flow shear rate with respect to the minor radius of the tokamak cross section and
also depends crucially on the magnetic shear. For moderate magnetic shear, the unstable ETG mode
is strongly localized in the poloidal direction and is elongated along the radial direction, with a
characteristic radial width much larger than the electron Larmor radius. This may explain the
formation of streamer structures above the threshold of ETG mode instability. Streamers are
believed to enhance electron thermal transport beyond the values provided by simple mixing length
estimates. For very low values of magnetic shear, the ETG mode structure becomes extended in the
poloidal direction, and the ballooning formalism does not apply. In this case, the direct method is
used and it is shown that the ETG mode is strongly localized in the radial direction. The small radial
extent of these modes may considerably reduce electron heat transport, which would enhance the
formation of an electron thermal transport barrier. 2003 American Institute of Physics.
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I. INTRODUCTION modes described by an advanced fluid mddet® Anoma-
) . . lous electron heat transport is now believed to be caused by

Many experimental observations in tokamakee Refs. o most unstable electron temperature gradigfiG) mode
1-4, and references therginas well as numerical or by a trapped electron mode
simulationé‘_g S.hOW. that the eleciron the_rmal transport is The stability properties and spatial structure of the ETG
anomalous _|n3|de_ internal transport barnéﬂe‘;l_?,s), which mode will be studied in this paper. In the absence of plasma
are for”?ed In regions O_f strong plasma rotatpn _ﬂOW Shearrotation, the linear theory of the ETG mode instability is well
The region of reduced ion thermal transport inside an ITB

o ; . . established®~° The similarity between ITG and ETG
coincides approximately with the region where the flow . . .
. modes was pointed oliwvith the role of electrons and ions
shear ratewg, exceeds the linear growth of the most un-

stable ion temperature gradiefitG) mode, y exchanged and the maximum growth rate for the ETG mode
7L max: larger than the corresponding ITG mode by a factor
(m; /mg)*2, wherem; is the ion mass anth, is the electron
wEE(a —BZ |7t max (1) masg. Thus, when the Eq1) holds for the ITG mode and
the ITG mode is suppressed, the ETG mode is not necessar-
wherer is the minor radiughalf-width of the flux surfaceq  ily suppressed. Also, in the absence of plasma rotation, the
is the safety factor as a function of the flux surfaEes the ~ characteristic width of the ETG mode is smaller than the
radial electric field, andB is the magnetic field strength Width of the ITG mode counterpart by a factor on the order
(typically measured at the outboard edge of each flux surof (me/m;)¥2 As a result, the ETG mode width is much
face. shorter than the characteristic scale length of the sheared
The influence of nonuniform plasma rotation on ITG background flow. Because of this, it is now widely believed
modes in tokamaks was considered in Ref. 10 using the dithat plasma rotation has only a slight influence on the ETG
rect method(DM),'! which was developed for dissipative mode.
electron drift waves in plasmas with a background velocity = The simple mixing rate estimate for the electron heat
profile that is a linear function of the minor radius. This conductivity, xe, which is qualitatively right for the ITG
method was later generalized to the case of a parabolic vanode, indicates that the transport driven by ETG modes
locity profile in Ref. 12. The effective stabilization given by would be smaller by a factomf,/m;)*? than the transport
Eqg. (1) has been qualitatively confirmed for reactive ITG driven by ITG modes. The last conclusion is not consistent

r\ d/qcExXB
dr
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with experimental observations, at least inside ITBehere  results that are qualitatively similar to the kinetic approach,
Xe IS observed to be much larger than the ion thermal conespecially for plasma conditions above the ETG instability
ductivity, x; , and wherey, remains far above the neoclassi- threshold 7 o [ 7> 76 or, Where n,=(d InT)/(dInng), T,
cal level. This inconsistency may be removed by considerings the electron temperature, and is the electron density
the results of gyrokinetic simulatiofiswhich indicate that This advanced fluid model will be used in this paper
radially elongated structures, called “streamers,” appear juswith the assumption that the ETG mode is electrostatic and
after the electron temperature gradient exceeds the criticdhat ions can be treated adiabatically. Note that deviations
instability value. from ion adiabaticity were investigated by Singt al®

It is believed that an appearance of streamers is causeéthese deviations were found to produce a very small stabi-
by nonlinear effects, which lead to a merging of smallerlizing effect on the ETG instability. In addition, Debye
structures. It is shown in this paper, however, that undeshielding effects were shown in Ref. 18 to have only a small
appropriate conditions, radially elongated structures can agnfluence on the growth rate, at least fcfJ/ p2<1, which is
pear in the linear stage of ETG modes. Hence, radially elontypical for modern tokamak&vherel . is the electron De-
gated structures are not exclusively a nonlinear phenomenohbye length ang, is the electron Larmor radius

It has been shown in Refs. 20—22 that the radial nonuni- For ETG modes, typical spacek]l) and temporal
formity of plasma parameters such as the diamagnetic fretw 1) scales are such tHat®
guency have a strong influence on the spatial structure and
growth rate during the linear stage of dissipative electron
drift and ITG modes. It is assumed that strong flow shearin | ¢ <<k ¢,
regions of low magnetic shear also has a strong effect on the
radial structure and growth rate of ITG modés* The re- and
ductioq in trqnsport caused by th_e presence of ve_Iocity flqw max @, 7)<Qe,
shear in regions of low magnetic shear is consistent with
integrated modeling simulations of internal transport barriergvherep; is the ion Larmor radius;, is the electron thermal
in tokamaks using models for transport driven by ITG andvelocity, ¢; is the thermal velocity of the major ion species,
trapped electron modés. Q. is the electron Larmor frequendy, andk; are the com-

The primary objective of the present work is to study theponents of the wave number perpendicular and parallel to the
linear ETG mode spatial structure and, in particular, radiallypackground magnetic fieldy is the real part of the ETG
elongated ETG mode structures in the presence of nonunfode frequency, and is the growth rate of the unstable
form toroidal and poloidal plasma flows, using both themode.
strong ballooning approximatiofSBA) and direct method Consider multiple species of ions with density and
(DM). temperaturdl; , wherej=H, for hydrogenic ionsj =2, for

This paper is organized as follows. In Sec. Il, the theo-impurity ions with charge&, andj =S, for superthermal ions
retical model and the basic two-dimensiot@D) differential ~ with chargeZs (such as fast alpha particles or neutral beam
equation, which describes the ETG eigenmode structures inigjection iong. Each density is divided into a background
tokamak cross section, are presented. In Sec. lIl, this struglensity,no;, and a perturbed densiign; . If the perturbed
ture is analyzed using the strong ballooning formaliSBP ion densities are adiabatic, the following relation holds
(Refs. 20, 25 up to the second order approximation. In Sec. n.
IV, the DM is used in carrying out for a more detailed study ——!=— 7P, (2)
of spatial structure of the ETG modes, in the cases of both Noj
low and moderate magnetic shears. Finally, in Sec. V, thevhereTjETe/Tj , =—e¢/T,, and¢ is the electric poten-
influence of the ETG mode structure on the electron heafjal of the perturbation. Iff;=no;/Nge, for j=H, Z, or S,
transport is discussed. The influence of nonuniform backwheren,=n,, is the background electron density, the quasi-
ground flow on electron heat transport appears to result fromeutrality condition can be writtenge= noy+ZNgz+ ZsNos
a modification of the ETG mode structure in radial directionor, equivalently,
and the formation of “streamers” during the linear stage of

-1 -1
pe =K >pi 7,

. - n
the instability. ToH _ 4 Zf,— Zfs.

Noe
Il. BASIC EQUATIONS The Poisson equation for the perturbed electric potential

. ) _may be written in the form
An electrostatic model for ETG modes, as described in

Refs. 17 and 18, is used and toroidal and poloidal rotation in , V2 one D 17— 7 f N4 ZEort Zof
the tokamak plasma are taken into account. Also, the effectsde¥ - ¥ = Noe [7u 27 Zsls) + 217771 Zsf 5]
of impurities, superthermal ions and noncircular flux sur-

. . . . 7 _ on
faces are considered. Gyrokinetic simulatidnsave con kL ) 3)

firmed that electromagnetic effects have very little influence Noe
on the ETG mode linear instabiliisee, for example, Fig. 1
of Ref. 19. In the work of Singhet al,*® it was shown that
the advanced fluid model developed in Refs. 13-15 yields r=(1—2Zf,—Zsfg)my+2Zf,7,+2Zsfs7s.

where
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The continuity equation for the perturbed electron denp_ =n,.T,, is the background electron pressuwg, is the

sity takes the form

J
E +Vg-V [N+ V| (NgeVe) + VII(nOeVeH) =0,

(4)

wherevy, is the electron velocity perturbation parallel to the
magnetic fieldB, which satisfies the equation,

(&

Mg E
= H(CI) - ‘ﬂ—e/Te_ 5ne/noe),

+vg-V

Vgt Vergy Vo

©)

wherev, is background parallel electron velocity ang is
projection of perturbated electron velocity on the radial di-
rection.

In the electron continuity equation, the electron drift
across the magnetic fiel, assumingn<Q,, is

Vie:VE"'Ve* +Vep+VeHa
wherevg is the EXB drift,
c

SEXB,

VE:
B
0

Vv, o is the diamagnetic drift,

V* e

_ BXVp,,
engeB; e

Vpe is the drift due toV|B| and magnetic curvature,
Te
VDezm@X[(Q\'V)Q\+V|B|/Bo]-

Vep is the polarization drift,

dE
Vep:a/(BOQe),

where
d E= J VIE, E=-V
dt EJFVO' ' —Vé,

and vy is the drift due to the off-diagonal elements of the
stress tensofl,,

cBXVII,

Ven=— — - 1772 -
er]OeBO

background electron flow velocity,, is the toroidal com-
ponent of the flow velocity. The flow velocity is assumed to
be a function of the minor radiug=v(r).

The system of equations, Eq8)—(6), is a linearized set
of equations that determine the spatial-temporal evolution of
the ETG instability in axisymmetric tokamaks with circular
cross section. The generalization for tokamaks with elon-
gated cross section will be discussed in the final section of
this paper.

Following the procedure described, for example, in Ref.
14, Egs.(4)—(6) can be written in the form

ong
—+Vy- V+Vpe V]|—+(V,e—Vpe) - VD
ot No

1
+ Vpe: \Y 5Te+ n_OV : (nOeVHe)

+pg| 5 T Vael 1+ 7¢) - V| V20 =0, ™
d d 5 6Te Ong
E+VO-V v“e'f'vreav()“:Ce (I)—T—e—n—o , (8)
Jd 5 OTe
E+§VD9-V+VO-V T—e+(77€—2/3)v*e'VCI>
ARV L 9
3lat TV Y T, T ©

It is assumed that all of the perturbed variabfesn,, 6T,
and dv have the form

f(r,0,0)expimé—in{—iwt),

whered is the poloidal angle with mode numbsex, and{ is
the toroidal angle with toroidal mode numbae1. The
functional formf(r,6,{) for each perturbed variable is as-
sumed to vary slowly with compared with the exponential
dependence exio().

Simulations of DIII-D}* Tokamak Fusion Test Reactor
(TFTR),? and other tokamaks have shown that the flow shear

e

has a strong radial gradierdwg/dr, inside internal trans-

T d
_aa

q cE

® =
E r By

The equation for the evolution of the electron temperaport barriers. Note thabg can be approximated with

ture perturbation may be written

3 d
Eno _+VOV

o 6Tt V-

3
E nOTeVLe+ Oxe

+ngTeV v, =0, (6)
whereq, . is the electron heat flow,
q =§&(q><V)T No=n
*e o meQe | e 0 Oe:
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d [cE,

dr| By

in regions with sharp gradients of electric field, whegg is

the poloidal component of the background electron velocity.
The background velocity flow is approximated using a

parabolic function

Vo(1) =Vo(ro) +V4(ro) p+ (L2 V(1 o) p?,
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wherep=r—rg, rq is the radius of the mode rational sur- ligible becausek,|>|k,|. However, the contribution of tor-
face, andnq(ro)=m. Terms with the form {y-V)f on the oidal flow velocity in the last term on the LHS of E) is
left-hand side of Eq94)—(9) result in a Doppler shift of the kept and it is approximated as follows:

ETG perturbation frequency:

d ic’ky, d

1d% d ¢
00 p2 , UraUOIIN_EVLd’aUOHN_Q_eq)mUOH-

p2dr
"o

dl)o(.)
dr

w—w— k&{ 000|r:r0+
r:ro
(10 From Egs.(7) to (9), in a framework moving with con-
wherek,=m/ry. The contribution from the toroidal compo- stant velocityvq,, one obtains a 2D differential equation for
nent of the background velocity to the Doppler shift is neg-the functionG=® — 6T,/ T,

k(N pet p2) w 10 1) 10 ©ppok> i p?
0 7De Pel) 2 *e | TDelherd Lhe
[l-l- . 0+ wD°\3+T 3 . Wy (1+7, 3 -
—_—
5 NG 5 1 7) 5
o2 L™ De -2 - o £2 2
+ 3 wDe 1 T + 37.(‘)De+ ’T( e 3 wDew*e+ 37_(1+ ne)wDew*ekLpe G
—_—
(5 1) 5 . 1) Wy ) 5/%2 5 /%ﬁch kikoe? ( d )q)
- §+; _3 Wpel 1+ =1 — T \776’_?’ +§ L)\De(w_wDe) + (l)’TQe EUOHV (11)
—_————
|
together with one algebraic equation conneciignd @, oR
O=—o,
_ (0—5wpd3)G Ce
1+ 7+HKoNE) (0 —Bwpd3) + 27wI3— w, o 7e—2/3) K=K pe.,

(12)
A . ) ] Eqg. (11) can be rewritten in dimensionless form
The operatorg; andk, introduced in Eq(11) are defined as

follows: )2 &2 d
Al —+iy| —B+C 2+|D +|y G=0, (19

. i (4 i (4 %

=T gR\gg 1A= "GRG TV where
and A k 1 Zgne 10 1 1 Q1 5

7 ag?|719 T3 )Tt g 2T g )
2= 15 19
k2 2 1 10
where B:QZ 1+7 1+—2e +Qk gne_Z(;-F? g(ﬁ)
w
y=nq'p=KeSp (13 Pe
L . k? 10 2k?g(6 7

ands=roq'/q is the magnetic shear. . . 5 9ne+9Te+§g(0)H+ a( )[gTe_ggne

To take into account nonuniform poloidal rotation, one

should replacev with the Doppler shifted frequency

kgdzvog
P~ "5 2
2 dp =0

10 10 ’
+?(1+T)g(0)+?k 9(0)(Gnet dre) |»

02 02
—<1+ e) Qk

T pe

dUog

Kog,” 2

w—

p=0 k2SZ
in Egs. (11) and (12). As in Refs. 17 and 18, where it is C= T
assumed thak?\3,<1 and\3,<p2, the terms in Eq(11)
that are denoted W|th underbraces can be neglected. Y5

In the last term on the right-hand side of H4l), the T3 K Gnet gTe)}’ (16
fact that|®|~|G| can be used and the equation can be sim-
plified by replacing® by G. Then using the dimensionless . _ ks 1 dug 17

variables - qc. Q dy

10
Onet Ore ™ 3

Downloaded 02 Nov 2003 to 128.180.100.58. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



3618 Phys. Plasmas, Vol. 10, No. 9, September 2003

where use has been made of the following notations:

_ 2kgTeC 9
‘”De= eBR g( )l
~ koCTe One
“xe="eB R’

77eEgTe/gnev
R dT,

gre= T_QW
~ Rdng

One EW

Jd
g(#)=cosh+is(sin 0)5— am Sire 6, (18

and o= —q°RdB/dr is the Shafranov shift term resulting

from finite B effects in the equilibrium.

When D=0, (d/d0+iy)—aldd, and Ca*dy°—

—C#?, which is typical for the ballooning formalism, Eq.

(14) coincides with Eq.(17) in Ref. 17 (which is written
using a different dimensionless variable notatioAlso,
when w?<k?c? andk?\3.<1, Eq.(14) coincides with Eq.
(41) of Ref. 18 ifg(#)=1 and if 7 and ¢, in Ref. 18 is
identified with = and 2§, in this paper.

In order to take into account the poloidal plasma rota-

tion, one should replac@ by

Q—2Ky—Py?,
where
k=lER (19
2S Ce
p=_ R _due (20)
2ks’Q, dp
and
dvgy
wg= dp

In the next section, Eq(14) is analyzed in the strong
ballooning approximatioiSBA).

IIl. STRUCTURE OF ETG MODES IN THE STRONG
BALLOONING APPROXIMATION

In the ballooning formalisnisee Ref. 25, for example
the functionG(y, 0) is represented by the expression

6(y.0-3 ™[ dyemiGiy. ), @

where

G(y, 7)=Go(y)f(m)e V=m0,

In this expressionGy(y) is an envelope, which will be ob-
tained in the second order of the SBA.

Davydova et al.

A(92+'Da B,—C 2
I I an 1 (7= )

+E[cosn— am Sir? 7+ S(7— p)sin 7]]] f(7)=0. (22
In this expression,

E=2kQ 1+ 10+ 1Ok2
B r 3 37

2k?

T

7

10 )
Ore— §gne+ ?k (gne+ gTe) ’ (23)

and

By=Q%(1+Kk?d%) + QK[ gne— k¥ (Gnet gra)/ 7], (24)

where

QZ
1+ —

Wpe
Note thatB,—E=B(g(6=0))=B,.

By using the following transformation,

1
de=—

D
f(77)=exp(—lﬁ77)f1(77),

Eqg. (22) reduces to
2 2
I _ _ 2
{AW+4A B1—C(7—m)

+E[cosnp— amsir12 n+s(n— n)sin 7]]] f1(7)=0.

In the strong ballooning limit, it is assumed that the
function f,( %) is strongly localized near the valug= 7,
where the effective potential is minimum. Expansion of the
trigonometric functions nean= »,, up to second order in

(7= m)?, yields

@ D?
{AW—(Bl—ﬂ +E[cosn— amSir? 7]

P I L= 4 P

1(77 T 3¢, +401]f1 0, (25

where

E1=E[(1—s9)sinyg— ansin(27y,)] (26)
and

C,=C+E(1/2—s)cosy,+ Eap, cos 7. (27)

The effective potential in Eg25) has extremum at points

that satisfy the equation
= —E1/(2Cy). (28)

One of the most important solutions of EG8) is 7,=0, on

The first order of the SBA produces a one dimensionathe outboard edge of the torus, whéte=0 and the poten-

eigenvalue problem

tial usually has the deepest minimum.
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A. The first order strong ballooning approximation

In the first order SBA, substitutingy,=0 in Eq. (25),
yields

@ D2

1’*&72‘(31‘ an

+E—|C+E

1 2

E_S n f1=O
(29)

Let B,=B;—E—D?(4A) andC,=C+E(1/2—s), so that

Eqg. (29) can be rewritten as

62
1AW—BZ—CZn2}f1=O. (30)

Equation(30) coincides with Eq.41) of Ref. 18 after the
corresponding renormalization.

A particular physically relevant solution of EG30) is
given by

flzfoeX[ﬁ(—(rnz/Z), (31)

where

2g2 ,
—Qrdg

T

, 10
o= CZ/A=—|qQ[ [k(gne+gTe+§

3 Q

2k?
- Q

.

In order to describe localized eigenmodes, the sigwor dfi
Eq. (32) should be chosen so that the real paribab posi-
tive (Ro>0).

If

3 37

] 1/2

1+5)
7 3

_E’Msz;_s

1 10 10
2k(—+—+—k2)
T

7 10 ’
Jre™ §gne+ ?k (gne+ gTe)

2 —-1/2

Ore™ §gne

k., 10
T3

1

1+ —k—Q
T

(32

k<Q<Kkgre,
and
gre> (10ne),
one can obtain an approximation

ok Onet Oret10/3  ]%2
o= A g oY 101+ DKi3|

(33

which is similar to Eq(46) in Ref. 18.

A necessary condition for the application of the SBA is
|o>1, which may be verified after calculating the eigenvalue

Q). In the first order of SBA, the dispersion relation fdris
given byB,=AC,, or

D2

BO_ ﬂ:

Bs, (34)

where

Toroidal electron temperature gradient mode structure . . . 3619

i 10| 10 9gne+ 07
Bi=— q—T[kZSZ K| Onetgret 3) -3 %ekz
1 ol 1 10r  10k?
Tlz7s T3t
2k? 7 10 , 12
- H O1e— §gne+ ?k (gTe+ gne)
2 10 57\ 1?2
X gTe—ggne k+§(1+T)k—Q 1+?
isk? 10
%_? Otet Onet ?
2 10 1/2
X| O1e— §gne+ ?(14’ 7) (35

The solution of Eq(34) may be found using a perturbative
method. In the zeroth approximation, one obtains the solu-
tion

Q = QO:QTO+ | FO

of the local dispersion relation

Bo=B(9(6=0))=0, (36)
which was analyzed in Refs. 17 and 18.
For reactively unstable ETG modes, considering

D?/(4A) and B as corrections in the first order SBA, a
dispersion relation is obtained in the form

DZ
(1+K2dO[(Q = 0r0)+ 1G] = 77 (20) +B((£0). (37)

Separating real and imaginary parts of the right-hand side of
Eq. (37), one obtains the equation
(Q—Q,0)?+T3=R+il. (39

The real and imaginary parts of the solutions of this equation
for unstable modes are

Rt aratly
2

mQ:QrO_F

(39

and

(40)

<FS—R)+JW%T>Z] v

2

The terml in Eq. (38) usually corresponds to the influence of
the magnetic shear, resulting in shear damping for a dissipa-
tive drift wave or amplification for a reactive drift wave.

In the case of [3—R)?>12, Egs.(40) and (39) can be

]

simplified to
30=(T'3-R)Y3 1+EL (41)
° 8 (Fg—R)?
and
I
RO~ (42

This corresponds to the toroidal branch of the ETG mode.
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In the opposite case, withz>(l“§—R)2, one has the Thus, the ETG mode in SBA has a width in radial direc-

slab-like branch of the mode tion: y= \/o or for the dimensional radial variable,
JQ~R(Q— Qo) =1/V2. (43) p=1Jolk,s. (49)

The transition from the toroidal branch to the slab-like Equation(49) has been used in Refs. 17 and 18 for the char-
branch occurs at~2qg, wheres<2q corresponds to the acteristic width of the ETG mode. This width is of the order
toroidal branct®1718 of the electron Larmor radius, and it is too small to explain

Some approximations for the ETG mode can be mad@anomalous electron heat conductivity. A correct approxima-
well above the threshold where tion for the mode radial width can be obtained in the second
order of SBA, which takes into account spatial variation of
the plasma parameters—in particular, strongly nonuniform
backgrounds flows.

2 ZTknge

O 27kPgre> 0.

(44)

In this limit, the condition can be found where the strong
ballooning approximation is valid. Using the approximation B. The second order strong ballooning approximation

|o|~qkslo~k*qsy27gre, (45)

for o?>1, it is determined that the following inequality
must be satisfied:

k?>>[sqy27gre] *. (46)

Note that for the toroidal branch, whesé2q<1, the correc-
tion to the growth ratd’y caused by thd3; term must be
small

The local dispersion relatiof) (7, ,y) obtained in the
first order SBA may be written in a form where the nonuni-
form background flow is taken into account:

Ei
T

Here, in Egs.(24)—(27) for B4, E, E;, andC4, Q is re-
placed byQ—2Ky—Py?. As it has been previously ob-
served, under the condition given by E46), the functionf ;

is strongly localized aty= =0, which corresponds to a
strong localization of the modé&(y,6), Eqg. (21), in the
poloidal direction at#=0. Because of this, EJ50) can be
expanded near,=0 to obtain

B, — E(cosn,— amSirf 7,) — Bs. (50)

S
2~— <
|B; /TG 272q<1.

If the two terms on the right-hand side of E®Q7) are
compared, it can be shown that

Bo+E,7i=B;, 51
D2 40'A2 0 27k f ( )
Bt / 2a "Dz =L where
where Bo=B;—E=[(Q—Q,0—2Ky—Py?)2+T3](1+ k2?5%
_ kS deH _ 1 dUO” and
qcet dy  afe dp E(1+s—2a,,)?
m
and E=| ot ant arciEt—stan]) E (53)
Al~ Kgre The termE, »? produces a small correction to the eigen-
Al TQlg? -T2 2 ; :
|Qq value becaustE,|<T'g and ;< 1. Using this fact, the local

Thus, the growth rate of the ETG mode changes, as a fun

tion of sheared toroidal rotationd(q /dp), even more

weakly than as a function of magnetic shear. In the follow-

ing, terms of ordeD? are neglected for simplicity.

Finally, consider the spatial structure of the ETG mode

as it is given by the first order SBA, whefgy(y) is con-
stant. In this approximation, the modg(y,6) in Eq. (21)
involves many poloidal harmonics:

_ 2
G(y,0) =, e‘mexlgfoex;{—(yzj) ) (47

éj_ispersion relation, Eq51), can be rewritten as

Q—Q,p—2Ky—Py?

ironfpo BroEemc
0 I'5(1+k2d3)
i1 By h
T ST 2217 K2d?) 8IA(1+ K2d2)?
EzUE
+t | 4
2I5(1+kdg) 4

The sum ovem may be replaced by an integral multiplied In the case wittK=P=E,=0, the result in Eq(41) is re-

by 1/2z, which yields

G(y,0)=foexd — o #?2+iyo—y? o). (48)

covered for the growth rate, usi@y~il .
To obtain the differential equation that describes the
mode structure, it is sufficient to replaeg in Eq. (54) with

After integration, the eigenmode “loses” its periodicity. the operator—d2/d9y? or, equivalently, to replacg on the
However, Eq.(48) is valid because the mode is strongly left-hand side of Eq(54) with the operator—id/dn, (see

localized neam=0.

Refs. 20 and 22, for example
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The coefficientsE,, and B; will be considered as de- Pl | yPE
pending onQy~ily (i.e., Q is replaced byil'y). Then, the ~ N+ 2a. 2ap,
eigenvalue problem in the second order SBA is reduced to Lo Lo
the equation, 1 [Rdwg/dr|2
~—|——] (142a,Y?<1,
. dZGO . 2 2 257'( QeKgpe ) ( %)
dy and
(55)
. K? | R?w?2 .
where ~ <1.
PFO| 2Ce(27'gTePe|dwE/dr|)
L= Ez ~ E(an+1/2) Thus, the influence of nonuniform background flows on
200(1+k%dg)  2To(1+k?d3) the growth rate of the ETG mode well above threshold is
negligible. However, not far from marginal stability, the last
__ K Yordant1/d) (56  term in Eq.(48) [~—i/PL/T] produces a stabilizing ef-
T V2 fect, which becomes stronger in plasmas with a large Shafra-
nov shift, especially when combined with the effect of small
and magnetic sheas. Background flows determine the mode
B B2 structure in the radial direction. In the second order SBA, the
f f ; < A
=T1— - spatial mode structur&(y, ), Eq. (21), is given b
T 0{ 2r§(1+k%d;) 8IG(1+ k2d§)2} P .0, B endy

g® K
G(y,0)=exp — —Fiyo-S(y+ K/P)?

. (60)

JVA[C+E(1/2—9)]
2T 5(1+k3d3)

%FO 1-

From Eq.(60), one obtains the square of the characteristic

Itis assumed in Eq55) that the radial derivative of poloidal size of the mode in the radial direction,
flow shear rate is essential. Equati@) is not applicable to

1/2
the case wherP is very small or zero. These asymptotic y2=k55252=|,<|1=‘£ ,
cases were considered in Refs. 11 and 12. P
The background eigenfunction of E(S) is whereL is given by Eq.(56) andP is given by Eq.(20).
B Well above the thresholdE| and |C| can be approxi-
Goly) = exr{ — 5 (y+KIP)?|, (57) ~ mated
|E|~2K*gre/ T, (61)
where
and
k=\iP/L. (58 |C|~Ks2g32, 172 (62)
The sign in this expression for should be chosen such that 1,5
Mk>0. The corresponding eigenvalue is
E 2 23/2q
vPL —’ ~ = 1 (63
Q=0+l -KIP—i——————— Cl K%\ so
ot 2vaT o(1+K2d2) dre
, if s/(2%%q)>0"1. In this caseL.~E(3+ ap,).
O T K2 iJA(C+E(1/2-5)) Finally the following estimate for the square of the char-
) 2T o(1+Kk2d2) acteristic mode width is obtained
iyPL E_Qz_‘gTe _ Qe 1/2~@ adre . (64)
20T (1K) 59 5t sikr|Rdogldr] s Rk
e

herea andR are minor and major radii of the torus. Thus,
he characteristic width of the mode is much larger than the
electron Larmor radiusp>p,, for typical parameters such
asvagr./R=2, k7~1, ands<1/2.
The width of the mode in terms of the dimensionless
2 q variabley is large:

600 yks(plpe)>1,

Let us estimate the effect of the nonuniform backgroun
flow, which is described by the parameterdefined by Eg.
(20). According to Fig. 2 in Ref. 1 and Fig. 2 in Ref. 2, one
can approximate

a dwE
Q. dr

wherea is the minor radius of the plasma. Using this ap-which means that each mode extends through many neigh-
proximation, one can show that the following inequalities areboring rational surfaces. The shift of the mode localization
valid: from the pointy=0 is given byK/P, which is of order
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wg The procedure described in Ref. 12 is followed for the
~Kgg—7>1, case withp# 0. The Fourier expansion of the eigenfunction
dwg/dp G

K
P

which is much smaller than the mode characteristic width
The radial width of the ETG mode given in E¢64)
goes to infinity if the magnetic shea, goes to zero. How-
ever, the validity of this expression is restricted to values of
magnetic shear that are not very small. The SBA method caMields a set of equations for the coefficietg and the func-
be used only if the requirement in E¢6) is fulfilled. In  tions Gm(y),
order to extend the region of applicability to smaller values o
of magnetic shear, the direct method is used in the next se@, L G,,— =

G(y,a>=§ CnGm(y)e™’, (68)

Cim+1Gm+11TCm-1Gm-1—2C1Gy,

tion. 2
IGmt1 IGm_1
—s(cm%— 15y ”:o. (69)
IV. DIRECT METHOD
where
In this section the starting point is again the basic 2D 2
equation, Eq(14), which is now rewritten as follows: L= @2_)‘+2(m+y)2—2Ko(m+y)—2wy— a
92 2 d
(?—2 5+iy| +alg(0)—1]+2iKo| - +iy —F)G (70
y With the assumption that the terms in E§9) that are
=0, (65 proportional toa are small, eigenfunctions,,(y) in the first
where approximation of the direct method are obtained as solutions
of the 1D eigenvalue equations in a mixed,{) space,
A b E (n) (N (n)
EE_E, KOE%, OJEE, Lme :)\m Gm . (71)
[(Q—0,0—2Ky— Py2)2+1“(2)](1+k2d§) The background eigenfunctiom€ 0) has the form
B C i
) G&?>=exp[ —5 VPl +ym?, (72
2iT[Q—Q,0—iTo—2Ky—Py?](1+k?d3)
- C where
=\+24y+py?, (66) ~mE—(¢+Ko)

y
andg(6) is given by Eq.(18), where the Shafranov shift is " 3-P

now taken to be zero, that isy,,=0, for simplicity. The The sign before VS—p must be chosen so that

values ofA, C, D, andE are given by Eqs(15), (16), (17), N . . .
(23) with O replaced by(— 2Ky—Py2. In Eq. (66), the R(i V= —p)>0. The background eigenvalue of EdJ) is

notation is Ao=—A—iVS—p
2iTo(Q—Q,0—iTo)(1+k2d3) 2y _ 2
N roC 0 e 67) B PN — 2(p+ Ko)m2 + (+Kp) _ 73
Z-p
_ 2iTK(1+ k?d3) Looking for solutions of the full set of Eq69) asG,,
B C ’ =G+ G}, whereG is a function that is orthogonal @9,
and f+oo 0alg
G,Gdy=0,
2iToP(1+k%d?) e
P=—"""¢c¢

and assuming

The expression fof is simplified by taking into account o e
the consideration presented in the previous section. In par- f |G#|2dy<j |G%|2dy, (74
ticular, under conditions well above the threshold, the growth - e
rate of the ETG mode is not changed very much by nonuni-

. . i for th ffici i f E ,
form plasma rotation or by the term that describes the eﬁec?quatlons or the coefiicientsy, are obtained from Eq(68)

of magnetic curvaturé~a). This property is qualitatively 0 \Y;

different from that associated with the ITG mode, which can ~ AmCm=a| 5 (Cm+1+Cpn— 1)—Cm). (75
be stabilized by a nonuniform plasma rotation, as was shown

in Ref. 10. where the matrix element is given by
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J126%(GY_,+saGE _/ay)dy Eigenfunctions of Eq(79) should be 2r-periodic func-
= 776 tions of u. They correspond to Floquet solutions of E§1)
= ml Ay of the form

i3? ) 76 F(z)=F (z)=expivz)P(z),

isY ) p(
2VZ-p 42-p) where v=—2(4+Kg)/p and P(z) is a function ofz with
As in the case witlp=0, considered in Ref. 11, the matrix period 7 (since z=u/2). The solution of this eigenvalue

elementV with p#0 does not depend am. prqblem dgpends on the _value of paramefgr or Q, with
For the ordering in Eq(74) to be valid, it is sufficient ~Variablea in Eq. (81) considered as an eigenvalue.

that In order to estimate the value of parameggr
la(V-1)|<V|2] (77) Q=ilg~iky2g7er

is substituted into coefficient, C, E, and it is assumed that

in the case where the coefficierts, depend only weakly on - _
Then, the coefficientd, C, andE can be written

m, which corresponds to the case of ballooning modes. Th8Te> Gne-

term aC,, can also be included into the left-hand side of Eq. |g%/§ O7e
(71), as it was done in Refs. 11 and 12. This yields anotheA~ — 2% C~—i 529?92, E= —2kZT,
sufficient condition for the validity of this method,
and
|aV|<|Z], (78) 1 s \2
which is valid even wheit,, is strongly dependent om. == 25 (I:Tr;) )

Solutions of the set of equations represented by(E5).
were analyzed in Refs. 12 and 27. This set of equations, witvhere ScritE|q(27'gTe)l/2|_l- Thus, if the condition in Eq.
A9, given by Eq.(73), is equivalent to the second order dif- (46) is valid, it follows that

ferential equation, I3 |<1 82)
d? d ; 1/2
D=3 2i(§+Ko) 1 +bg—2dgcosu=0, (79 ~ andifs/(2q)>|X[ then
du® du 12
E| 2q/3]
where |a|= o~ =1 (83
g(u)= D Cem Note that for typical values of tokamak parameters,
m p| |2roP)| R deg| | RFF%? dog
is the generating function and where STcs 7 ks?AQ, dr | |Q Kk2s2gT2 dr |<1'
S—p Ko) (84)
b=- ~ M ativi + 2 p } Now the matrix elemen¥ can be estimated,
and vel1s is> p{ i%2 ]
= —|ex —
_aVi-p 23-p 4(3-p)%?
2 2 ~|1+ is% vz exr{ _ izl/Z) {1 Serit _ Scrit
The transformation of the functiom(u), 2 4 " 22)® 4K%s|”
(J+Ko)u 80 (85)
g(u)=Fwexpi—r— (B0t |3/, which is the case when SBA holds, then
and the change of the independent variableute2Z are _ i 11
used in order to reduce E@79) to the standard Mathieu V~1+§ ST35 = (86)
equation,
, so that|V—1|<1, and
d°F
452 +(a—20yc0822)) F=0, (81) la(V=1)|<[2]"2 (87)
B B The condition in Eq(87) coincides with the sufficient con-
wherea=4A,, go=—4Q, dition given in Eq.(77) for the applicability of the DM if
b (4+Kg)? |%|<1. Thus, if SBA is applicable, the same is true for the
Ag=———"7—, DM.
P P In the caseX|>1, where SBA is violated, the matrix
and elementV becomes exponentially small,
o aV3—p crit Scrit
Q=—7p—2. V~(l+ 212 ex ~aK%s <1 (89
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for

Serit

12
|24 s

(89

Also

aV

ET?<1

under the condition in Eq88). Thus, in the casg|>1, DM
is also valid, according to the sufficient condition in E£g).
In the cas€X|<1, the paramete® is large

19 aV @ Q. o1
2p| |[2p 1pdwE
kgTeWR

for typical tokamak plasmas. However, in the cdsg-1,
where the magnetic shear satisfies the condition

4k?’

it is possible thatQ|<1.

S<

Davydova et al.

Under the condition of Eq83), |E|<|C|, the term pro-
portional to VA[C+E(3—9)] in Eq. (59, which was ob-
tained in SBA, can be expanded as a serig€iC|. It then
follows that the results for the eigenvalue obtained by SBA
and DM coincide. This is natural because both methods are
applicable for case A.

The spatial structure of the mode given by E®p) with
Ko=0 was described in detail in Ref. 12. In the limit
|p|<|2| andQ>1, this spatial structure coincides with the
one described by the SBA method, given by Ef). In the
next subsection the limiQ<1, where SBA is not valid, is
considered.

B. Case B: |Q|<1, k?s<s.;

If |Q|<1, a solution of Eq(79) can be obtained as an
expansion,

g(W)=1+C1e"+C_je M+ Cre''+C_e 24
(93)

Let us now compare the influence of the poloidal angsince the coefficient€ .., decay rapidly withl in this case.

toroidal shear plasma flows,

AToK| |2T3aR wg

2 Tkngeq R WE
D | | spe

dVy, : S p dVy |’
dr dr

so that] | >|K| if |dVy,/dr| and|dVy,/dr| are of the same
order of magnitude.

Ko

Only the first three terms in the series on the right-hand
side of Eq.(93) are retained and substituted into E@9).
Terms proportional t@*'" are equated, yielding

d d
2¢y—p’ TV 2y+p’

whered= aV/2~Qp and|d|<(|¢|,|p|). The corresponding

C, (94)

In the next two subsections, the eigenvalue problem igigenvalue is determined by the dispersion relation,

examined by DM in two limiting cases|Q|>1 and
|Q[<1.

A. Case A: |Q|>1, k?s>s;

In this case, the eigenvalég of the problem is given by
the dispersion relation

Ag=—2Q+Q"? (90)
or
B . S+p (y+Kg? apVET’2
)\—a(l—V)—l\/E—p+2_p 5 —i 25-p)
2 \V/ 1/2
~au—vy4zm+%_i3§J (91

In the last approximation, account was taken of the fact th

Ipl<|Z], [¢]<(Kql.

The expression fox in Eq. (67), the expression fov in
Eq. (86), and the expressions fax, i, p in terms ofA, B, C,
P, andK are substituted into Eq91) to yield

ot i JAC iE(-s)
T 0T S (14 K2d2) AT (11 K2d)
K? iVPE

P To(1+K2d2) (92

b= 2d°p 95
A .
In the case withp=0, it is found that
(u)y~1+ d el \d e U~e ;{ i ds'n (96)
u)~1+—e—-—e "~exg —i—sinu|.
J 20° " 29 v

The solution for Eq(96) was found in Ref. 11 for the
case of a velocity profile that is linear in the minor radius. In
this limiting case, Eq(79) reduces to a first order differential
equation. The periodicity requirement in poloidal angle of
the modes yields one restriction on the frequency, but it is
not enough for a full determination of its real and imaginary
parts. Also, the position of the mode centeg, remains
uncertain. For example, for dissipative drift electron modes,
his restriction can define the growth rates, but leaves the real
requency dependent on the arbitrary valuer gf'?2 This
difficulty does not arise when accounting for the nonlinearity
of the background velocity profile, or when

The dispersion relatio®5) determines both the real and
the imaginary parts of the frequency of the background
mode. With the definitions ob andd given after Eq.(79),

Eqg. (95 can be rewritten in the form
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2iTo(Q—Q0—iTo)(1+k?d2) iVE—p W\2 d
5 G(y,0)=ex - 2 _E +2—_
g A2 y=p
TR AT T e ®7) iEop ] d
Xexpgio— 2 (y+y1) _Zlﬂ—_
. p
with
P12 Xexp{—ie—l 2_p(y—y_l)z}, (102
V2=(479Tek“q2)‘1exp<— > ) (98) 2
where
Scri 2 . —
Em—(@f) . R(iZ¥3)>0. y1=§_lg, andy_1=—§;£. (103

The first two terms on the right-hand side of the dispersiorSince[>|>|¢| and|3|>|p|, the following result is obtained
relation in Eq.(97) do not change significantly with the for G(y,¥6):

growth rate of the ETG mode: NS o2
: e GW)—eXp[‘T( _EH
E ‘N O1e™ 59ne< ACN S 1 (99)
2ry| | 27%gre | ' |2r3| 27°q d RS ,
+ expgif———(y+1)
. . 2¢—p 2
Also, it can be seen that the influence of flow sheag (
~ 1) on the ETG mode is usually rather small since d o iE(y-1)?
—2¢+pex - —— (104

¢2c2 RZwET?:/ZqZ
2AI';  28°cigi?

Note that the conditiofi(i \=)>0 applies in this equation.
Equation(104) can be simplified further by taking into
account the fact thdty|>p and|#|<1:

R%w? G(y,e)~ei<5’2>y2+%

—5
4szc§<lo
y iVE(y2+1)
exp ——m—
2

for

Y=

ands?g¥?/ (%% >10"°. sin(6—3y). (109
The influence of the last term in E¢97) is exponen-
tially small. As will be shown below, poloidal harmonics The second term on the right-hand side of Et05 may
become strongly localized with respect to the distance because amplification or reduction of zonal flows.
tween mode rational surfaces and the toroidal coupling be- It follows from Eq. (104) that the structure of the mode,
comes negligible. Similar behavior is found for the ITG G(y,#), changes dramatically compared with the result in
mode for very small values of magnetic sheanvhich was the previous case A. In this case B, the paramEtéar large:
pointed out in Ref. 20. Here, a straightforward derivation of
the dispersion relation will be given and the mode structure |E|~(iczr_it
using the DM in the case under consideration, where SBA is k°s
not valid, will be determined. : : Thus the characteristic dimensionless width of each har-
The spatial structure of the mode is determined by themonic term in Eq104) is
Fourier transform of the generation functi@{u), which '
directly yields coefficients of the original eigenfunction y~|3| VA= |o|?<1,
G(y,0), Eq. (69):

2
>1.

and the dimensional radial variable is given by Ef). The
. characteristic width of the ETG mode in the regions of small
G|(Y)=f g(uye Vdu. (100  magnetic sheas becomes of the order of electron Larmor
radius,p., and much less than in case A.
Using Eq.(93), the eigenfunctiorG(y, 6) can be written as The main contribution to the mode in case B is given by
the first term in Eq(104), which describes the mode local-
G(Y,0)=Go(y)+C1Gy(y)e'’+C_1G_y(y)e™"’, ized near the mode rational surfaceratr,, whereq(r)
(102) =m/n. The spatial structure expands uniformly over the po-
loidal direction. Other terms are exponentially small. They
where the coefficient€ .., are given by Eq(94) andG,(y) describe the structure of poloidal harmonms: 1, which are
(I=0,%£1) are given by Eq(72). strongly localized near the positions of their mode rational
Thus, Eq.(101) can be rewritten as surfacesq=(m=1)/n.
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V. CONCLUSIONS AND DISCUSSION the electron heat transport in the plasma core is much larger
than that given by a simple mixing rulg.= yolkf with
It was found that well above threshol@(:>1), the | -1 ngeed, for the ETG mode described above as a
growth rate of the ETG mode changes only slightly in theq| tion of the two-dimensional problem, EAd4), the char-
presence of nonuniform plasma rotation, in the balloo”ingacteristic value ok, is equal top~ *<p_ * according to the
e

regime as_well asin th_e opp(_)site_ case, where the mode is_ NALtimate given by Eq€107) and (64). The enhanced elec-
localized in the_ poloidal d_|rect|on. However, the spatial o thermal diffusivity may drive the temperature profile
m.ode structure Is sfcrongly |nﬂu_enced b_y backgrpund _ﬂowstoward the marginal electron stability boundary. A critical
W'th a veI_OC|ty profile that varies nonlln_early With minor o3 rameter for the linear theory is not the magnetic shear
radius. This case has been analyzed using both strong bajse it byt the relation among the magnetic shear, the safety

looning and direct methods. factor and the electron temperature characteristic length.

The structure of the mode was investigated in the firS e \when the magnetic shear is less then unity, the condi-

order of the SBA in Refs. 17 and 18. It wi\?/;(?und that theyion in Eq.(106) can still be satisfied and streamer-like struc-
characteristic size of the mode is of ordet~*“in the po-

. A . _ tures can be formed. These conditions can explain some ex-
loidal direction, where the parameteris determined by Eq.

he derivati ic tak t th ferimental observations that electron thermal transport
(32). In the derivation, account is taken of the presence Ofgmaing anomalous in the central regions with small shear,

impurity and supertherm.all i.ons,.whic.h Iead. to a redefinition\m1ere an ITB in the ion channel forms. For example, within
of 7 compared to the definition given in earlier work, as well the internal transport barrier the temperature gradient scale

as in the definition of the Shafranov shift,, which contrib- length could be 0.06 m and the major radius can be 3.0 m, so
utes to a small reduction of the ETG growth rate. Forihat gr.=50. Then, ifq=2 and =1, s,;=(2x50) 2

strongly unstable ETG modefss is given bY Eq.(45). ) =0.1. Inthis case, a magnetic shear of few tenths will be
In a geheral case, thg strong balloon]ng formalism cang, eral times larger thas,;; and several times smaller than
not be_ applied to the tor0|dal_ drift modes in the presence O[mity (s<S<1). The parameters for this example are typi-
nonuniform flows. However, it has been shown by applyingqy tor joint European ToruSET) discharges with the inter-
the second ordgr SBA and DM to the same casse |l B nal transport barrierssee, for example, the simulation of the
and, more precisely, in the case 1V fat the SBA works if JET discharge 4054@Ref. 7)]. Also, some experimental re-
the ETG mode is strongly localized in the poloidal direction.su”S from DIII-D (Ref. 1) suggest that the magnetic shear is
Specifically, the ETG mode witkjpe=1 is strongly local- |0\, anq varies over the range0.16<s< 0.6 within the in-

ized in the poloidal direction, and the SBA is validjif>1 o transport barrier. Case AQ|>1 andk?s>s,;) can
or be applied to the plasma within the ITBs, where the magnetic
S>Serit. (106)  shearis of order of 0.6. Thus, the condition for case A can be

) ) _satisfied when the electron transport remains strong.
For toroidal ETG modes, the magnitude of the magnetic  The case of small magnetic shegrwas considered un-

shear is also restricted by inequaldty- 1/2q. The character-  ger the condition opposite to that given by inequality in Eq.
istic mode width in the radial directioh'®is of the order of  (10g). In this case(|o]<1), the structure of the ETG mode
the electron Larmor radius in the absence of backgrounghanges significantly. It is extended in the poloidal direction,
flows. With the effect of nonuniform background flows taken anq the SBA method is not applicable. This case was studied
into account, the characteristic size of the mode in the radia}, 5 straightforward manner using the DM. For a sufficiently
direction is estimated, when the condition in 408 IS small magnetic shear, toroidal coupling becomes exponen-
fulfilled, using both the second order SBA and the DM tech-tja|ly weak, and the ETG mode becomes strongly localized
niques. Both methods yield similar results. Namely, the char, the radial direction. Under these conditions, the character-
acteristic size of the mode is found to be istic size of the ETG mod&, is given by

4 — —1y (12 U2 -1

F”(kas)flTy (107) p~(Kgs) Ho|5 s<(q(27gre ™), o<1, (108
whereP is given by Eq.(20), andL is given by Eq.(56). which coincides with the size of the ETG modg, given in
Note that this size depends strongly on the paramBter Eq.(49), which was obtained in the opposite strong balloon-
which is proportional to the first derivative of the flow shearing limit, o>1, in the first approximation, or in the absence
rate P~dwg/dr). of nonuniform plasma rotation. Equatio®9) and(108) co-

Generally speaking, the mode structure depends oincide only formally, because the first formulgg. (49)] is
many parameters that enter throuBhand L, such as the valid for large values of the parametet and the second
safety factor, magnetic shear, gradients of the electron tenfermula[Eq.(108)] is valid for small values of the parameter
perature and density, and Shafranov shift. A simplified for-o. The poloidal structure of the modes is quite different in
mula, Eq.(64), is obtained for this size, assuming that thethese two cases. Equatiof9) describes the radial structure
ETG mode is well above the threshold of the instability of the ETG mode whefQ|>1 andk?®s> s (case IV A in
[971e> (9ne1)]. The radial size of the mode is approximately the first order SBA, while Eq(108 describes the radial
50 times larger than the electron Larmor radius. Such a radiahode structure in the opposite case wh@i<1 andk®s
size is rather typical for streamers, as observed in the nu<s.; (case IVB. In the presence of nonuniform back-
merical simulations reported in Ref. 8. This may explain whyground flow in case IV A, the first order SBA is insufficient
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to determine the radial mode structure. In this instance, one Many present day tokamaks have elongated magnetic
should use the second order SBA or, alternatively, the morsurfaces. The effect of elongation described in Ref. 28 may
rigorous DM. Both methods give the same result, but use obe take into account qualitatively if the operaf(fr in Eq.

the DM helps in understanding the difference between théll) is written,

radial widths obtained in the first order SBEg. (49)] and 52

the radial width obtained in the second order SEA;. (64)]. k2= kf,( l—SZF) (109
Equation(49) gives the radial width of each separate poloi- y

dal modem [see Eq(72)]. The coupling between many dif- is replaced by

ferent poloidal modes due to nonuniform flow is not taken 2

into account at this point in our derivation. However| | Rf=k§( 1—Sfﬁ), (110

>1 andk?s>sg; (case IVA, many poloidal modes take y

part in the formation of the global mode structure. This cou-Where

pling was showq in detail in Ref. 12, where the sum over the  g2— (25— 1+ (s—1)2«?), (111
mode numbersin Eq. (68) was calculated. Thus, the global
mode in this limit(case IV A is composed of a large number
of poloidal mmodes, each of which is localized around its

rational magnetic surfage. The distance betweep the;e rati, the definition of coefficien€, Eg.(16), should be replaced
nal magnetic surfaces is smaller than the spatial width o y kzsflr. Also, the dimensionless variablg=k,sp be-
m-modes and, consequently, they overlap. It has been ShOWEomesy= k,S,p. With this in mind, the magnetic shear pa-
in this paper, that ifQ|<1 andk®s<sg; (case IVB, the  ameters should be replaced by, in Egs.(107 and(108),
radial structure of the ETG mode can be described only byyhich describe the characteristic radial widths of the ETG
the direct method. In this limit of very small magnetic shearmode. Consequently, the following qualitative result is ob-
(k*s<sgqp), the coupling between different poloidal modes tained for both limits considered in this paper: the character-
becomes exponentially small, and only a few modes takgstic radial width of the ETG mode is reduced as the elonga-
part in the formation of the mode structUrsee Eq.(102)].  tion parameter is increased.

As a result, the distances between different rational surfaces,

which are inversely proportional ts, become large com-

pared to the radial width of each drift mode. Hence, for casACKNOWLEDGMENTS
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