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Toroidal electron temperature gradient mode structure in the presence
of nonuniform background flows
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The influence of nonuniform poloidal and toroidal background plasma flows on the spatial structure
and growth rate of the electrostatic electron temperature gradient~ETG! mode is investigated in the
linear approximation. This derivation includes the ballooning mode formalism and a more recently
developed version of the direct method by Taylor and Wilson@Plasma Phys. Controlled Fusion38,
1999~1996!#. It is shown that the growth rate of the ETG mode is not changed significantly by flow
shear. However, it is found that the spatial structure of the ETG mode depends crucially on the
derivative of the flow shear rate with respect to the minor radius of the tokamak cross section and
also depends crucially on the magnetic shear. For moderate magnetic shear, the unstable ETG mode
is strongly localized in the poloidal direction and is elongated along the radial direction, with a
characteristic radial width much larger than the electron Larmor radius. This may explain the
formation of streamer structures above the threshold of ETG mode instability. Streamers are
believed to enhance electron thermal transport beyond the values provided by simple mixing length
estimates. For very low values of magnetic shear, the ETG mode structure becomes extended in the
poloidal direction, and the ballooning formalism does not apply. In this case, the direct method is
used and it is shown that the ETG mode is strongly localized in the radial direction. The small radial
extent of these modes may considerably reduce electron heat transport, which would enhance the
formation of an electron thermal transport barrier. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1596832#
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I. INTRODUCTION

Many experimental observations in tokamaks~see Refs.
1–4, and references therein! as well as numerica
simulations5–9 show that the electron thermal transport
anomalous inside internal transport barriers~ITBs!, which
are formed in regions of strong plasma rotation flow she
The region of reduced ion thermal transport inside an I
coincides approximately with the region where the flo
shear rate,vE , exceeds the linear growth of the most u
stable ion temperature gradient~ITG! mode,gL max,

vE[S r

qD d

dr S qcE3B

rB2 D.gL max, ~1!

wherer is the minor radius~half-width of the flux surface!, q
is the safety factor as a function of the flux surface,E is the
radial electric field, andB is the magnetic field strengt
~typically measured at the outboard edge of each flux s
face!.

The influence of nonuniform plasma rotation on IT
modes in tokamaks was considered in Ref. 10 using the
rect method~DM!,11 which was developed for dissipativ
electron drift waves in plasmas with a background veloc
profile that is a linear function of the minor radius. Th
method was later generalized to the case of a parabolic
locity profile in Ref. 12. The effective stabilization given b
Eq. ~1! has been qualitatively confirmed for reactive IT
3611070-664X/2003/10(9)/3614/15/$20.00
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modes described by an advanced fluid model.13–15 Anoma-
lous electron heat transport is now believed to be caused
the most unstable electron temperature gradient~ETG! mode
or by a trapped electron mode.

The stability properties and spatial structure of the ET
mode will be studied in this paper. In the absence of plas
rotation, the linear theory of the ETG mode instability is we
established.16–19 The similarity between ITG and ETG
modes was pointed out@with the role of electrons and ion
exchanged and the maximum growth rate for the ETG m
larger than the corresponding ITG mode by a fac
(mi /me)

1/2, wheremi is the ion mass andme is the electron
mass#. Thus, when the Eq.~1! holds for the ITG mode and
the ITG mode is suppressed, the ETG mode is not neces
ily suppressed. Also, in the absence of plasma rotation,
characteristic width of the ETG mode is smaller than t
width of the ITG mode counterpart by a factor on the ord
of (me /mi)

1/2. As a result, the ETG mode width is muc
shorter than the characteristic scale length of the she
background flow. Because of this, it is now widely believ
that plasma rotation has only a slight influence on the E
mode.

The simple mixing rate estimate for the electron he
conductivity, xe , which is qualitatively right for the ITG
mode, indicates that the transport driven by ETG mod
would be smaller by a factor (me /mi)

1/2 than the transport
driven by ITG modes. The last conclusion is not consist
4 © 2003 American Institute of Physics
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with experimental observations, at least inside ITBs,1 where
xe is observed to be much larger than the ion thermal c
ductivity, x i , and wherexe remains far above the neoclass
cal level. This inconsistency may be removed by consider
the results of gyrokinetic simulations,9 which indicate that
radially elongated structures, called ‘‘streamers,’’ appear
after the electron temperature gradient exceeds the cri
instability value.

It is believed that an appearance of streamers is cau
by nonlinear effects, which lead to a merging of smal
structures. It is shown in this paper, however, that un
appropriate conditions, radially elongated structures can
pear in the linear stage of ETG modes. Hence, radially e
gated structures are not exclusively a nonlinear phenome

It has been shown in Refs. 20–22 that the radial nonu
formity of plasma parameters such as the diamagnetic
quency have a strong influence on the spatial structure
growth rate during the linear stage of dissipative elect
drift and ITG modes. It is assumed that strong flow shea
regions of low magnetic shear also has a strong effect on
radial structure and growth rate of ITG modes.23,24 The re-
duction in transport caused by the presence of velocity fl
shear in regions of low magnetic shear is consistent w
integrated modeling simulations of internal transport barri
in tokamaks using models for transport driven by ITG a
trapped electron modes.7

The primary objective of the present work is to study t
linear ETG mode spatial structure and, in particular, radia
elongated ETG mode structures in the presence of non
form toroidal and poloidal plasma flows, using both t
strong ballooning approximation~SBA! and direct method
~DM!.

This paper is organized as follows. In Sec. II, the the
retical model and the basic two-dimensional~2D! differential
equation, which describes the ETG eigenmode structures
tokamak cross section, are presented. In Sec. III, this st
ture is analyzed using the strong ballooning formalism~SBF!
~Refs. 20, 25! up to the second order approximation. In Se
IV, the DM is used in carrying out for a more detailed stu
of spatial structure of the ETG modes, in the cases of b
low and moderate magnetic shears. Finally, in Sec. V,
influence of the ETG mode structure on the electron h
transport is discussed. The influence of nonuniform ba
ground flow on electron heat transport appears to result f
a modification of the ETG mode structure in radial directi
and the formation of ‘‘streamers’’ during the linear stage
the instability.

II. BASIC EQUATIONS

An electrostatic model for ETG modes, as described
Refs. 17 and 18, is used and toroidal and poloidal rotatio
the tokamak plasma are taken into account. Also, the eff
of impurities, superthermal ions and noncircular flux s
faces are considered. Gyrokinetic simulations19 have con-
firmed that electromagnetic effects have very little influen
on the ETG mode linear instability~see, for example, Fig. 1
of Ref. 19!. In the work of Singhet al.,18 it was shown that
the advanced fluid model developed in Refs. 13–15 yie
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results that are qualitatively similar to the kinetic approa
especially for plasma conditions above the ETG instabi
thresholdhe,cr @he@he,cr , wherehe[(d ln Te)/(d ln ne), Te

is the electron temperature, andne is the electron density#.
This advanced fluid model will be used in this pap

with the assumption that the ETG mode is electrostatic
that ions can be treated adiabatically. Note that deviati
from ion adiabaticity were investigated by Singhet al.18

These deviations were found to produce a very small st
lizing effect on the ETG instability. In addition, Deby
shielding effects were shown in Ref. 18 to have only a sm
influence on the growth rate, at least forlDe

2 /re
2,1, which is

typical for modern tokamaks~wherelDe is the electron De-
bye length andre is the electron Larmor radius!.

For ETG modes, typical space (k'
21) and temporal

(v21) scales are such that17,18

re
21>k'@r i

21,

kice,v!k'ci ,

and

max~v,g!!Ve ,

wherer i is the ion Larmor radius,ce is the electron therma
velocity, ci is the thermal velocity of the major ion specie
Ve is the electron Larmor frequency,k' andki are the com-
ponents of the wave number perpendicular and parallel to
background magnetic field,v is the real part of the ETG
mode frequency, andg is the growth rate of the unstabl
mode.

Consider multiple species of ions with densitynj and
temperatureTj , wherej 5H, for hydrogenic ions,j 5Z, for
impurity ions with chargeZ, and j 5S, for superthermal ions
with chargeZS ~such as fast alpha particles or neutral be
injection ions!. Each density is divided into a backgroun
density,n0 j , and a perturbed densitydnj . If the perturbed
ion densities are adiabatic, the following relation holds

dnj

n0 j
52t jF, ~2!

wheret j[Te /Tj , F[2ef/Te , andf is the electric poten-
tial of the perturbation. Iff j[n0 j /n0e , for j 5H, Z, or S,
wheren0[n0e is the background electron density, the qua
neutrality condition can be writtenn0e5n0H1Zn0Z1ZSn0S

or, equivalently,

n0H

n0e
512Z fZ2ZSf S .

The Poisson equation for the perturbed electric poten
may be written in the form

lDe
2 ¹'

2 F5
dne

n0e
1F@tH~12Z fZ2ZSf S!1Z fZtZ1ZSf StS#

5
dne

n0e
1Ft, ~3!

where

t[~12Z fZ2ZSf S!tH1Z fZtZ1ZSf StS .
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The continuity equation for the perturbed electron de
sity takes the form

S ]

]t
1v0•¹ D dne1¹'~n0eve!1¹i~n0evei!50, ~4!

wherevei is the electron velocity perturbation parallel to th
magnetic fieldB, which satisfies the equation,

meF S ]

]t
1v0•¹ D vei1ver

d

dr
v0iG

5¹i~F2dTe /Te2dne /n0e!, ~5!

wherev0i is background parallel electron velocity andver is
projection of perturbated electron velocity on the radial
rection.

In the electron continuity equation, the electron dr
across the magnetic fieldB, assumingv!Ve , is

v'e5vE1ve* 1vep1veP ,

wherevE is theEÃB drift,

vE5
c

B0
2 E3B,

v* e is the diamagnetic drift,

v* e52
c

en0eB0
2 B3¹pe ,

vDe is the drift due to¹uBu and magnetic curvature,

vDe5
Te

meVe
ei3@~ei•¹!ei1¹uBu/B0#.

vep is the polarization drift,

vep5
dE

dt
/~B0Ve!,

where

d

dt
E5S ]

]t
1v0•¹ DE, E52¹f,

and veP is the drift due to the off-diagonal elements of th
stress tensorPe ,

veP52
cB3¹Pe

en0eB0
2 .

The equation for the evolution of the electron tempe
ture perturbation may be written

3

2
n0S ]

]t
1v0•¹ D dTe1¹•S 3

2
n0Tev'e1q* eD

1n0Te¹•v'e50, ~6!

whereq* e is the electron heat flow,

q* e5
5

2

pe

meVe
~ei3¹!Te , n0[n0e ,
Downloaded 02 Nov 2003 to 128.180.100.58. Redistribution subject to A
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pe5n0eT0e is the background electron pressure,v0 is the
background electron flow velocity,v0i is the toroidal com-
ponent of the flow velocity. The flow velocity is assumed
be a function of the minor radiusv05v0(r ).

The system of equations, Eqs.~3!–~6!, is a linearized set
of equations that determine the spatial-temporal evolution
the ETG instability in axisymmetric tokamaks with circula
cross section. The generalization for tokamaks with el
gated cross section will be discussed in the final section
this paper.

Following the procedure described, for example, in R
14, Eqs.~4!–~6! can be written in the form

S ]

]t
1v0•¹1vDe•¹ D dne

n0
1~v* e2vDe!•¹F

1vDe•¹dTe1
1

n0
¹•~n0evie!

1re
2F ]

]t
1v* e~11he!•¹ G¹2F50, ~7!

S ]

]t
1v0•¹ D v ie1v re

d

dr
v0i5ce

2S F2
dTe

Te
2

dne

n0
D , ~8!

S ]

]t
1

5

3
vDe•¹1v0•¹ D dTe

Te
1~he22/3!v* e•¹F

2
2

3 S ]

]t
1v0•¹ D dne

n0
50. ~9!

It is assumed that all of the perturbed variablesf, dne , dTe ,
anddv ie have the form

f ~r ,u,z!exp~ imu2 inz2 ivt !,

whereu is the poloidal angle with mode numberm, andz is
the toroidal angle with toroidal mode numbern@1. The
functional form f (r ,u,z) for each perturbed variable is as
sumed to vary slowly withz compared with the exponentia
dependence exp(inz).

Simulations of DIII-D,1,4 Tokamak Fusion Test Reacto
~TFTR!,2 and other tokamaks have shown that the flow sh
rate

vE5
r

q

d

dr S q

r

cEr

B0
D

has a strong radial gradient,dvE /dr, inside internal trans-
port barriers. Note thatvE can be approximated with

d

dr S cEr

B0
D'

d

dr
v0u

in regions with sharp gradients of electric field, wherev0u is
the poloidal component of the background electron veloc

The background velocity flow is approximated using
parabolic function

v0~r !5v0~r 0!1v08~r 0!r1~1/2!v09~r 0!r2,
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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wherer[r 2r 0 , r 0 is the radius of the mode rational su
face, andnq(r 0)5m. Terms with the form (v0•¹) f on the
left-hand side of Eqs.~4!–~9! result in a Doppler shift of the
ETG perturbation frequencyv:

v→v2kuFv0uur 5r 0
1

dv0u

dr U
r 5r 0

r1
1

2

d2v0u

dr2 U
r 5r 0

r2G ,

~10!

whereku5m/r 0 . The contribution from the toroidal compo
nent of the background velocity to the Doppler shift is ne
ne

s

im
s

Downloaded 02 Nov 2003 to 128.180.100.58. Redistribution subject to A
-

ligible becauseukuu@ukiu. However, the contribution of tor-
oidal flow velocity in the last term on the LHS of Eq.~8! is
kept and it is approximated as follows:

v r

d

dr
v0i;2

c

B
¹'f

d

dr
v0i;2

ice
2ku

Ve
F

d

dr
v0i .

From Eqs.~7! to ~9!, in a framework moving with con-
stant velocityv0u , one obtains a 2D differential equation fo
the functionG[F2dTe /Te ,
~11!
together with one algebraic equation connectingG andF,

F5
~v25vDe/3!G

~11t1ku
2lDe

2 !~v25vDe/3!12tv/32v* e~he22/3!
.

~12!

The operatorsk̂i andk̂' introduced in Eq.~11! are defined as
follows:

k̂i52
i

qR S ]

]u
1 iq8nr D52

i

qR S ]

]u
1 iy D

and

k̂'
2 5ku

2S 12s2
]2

]y2D ,

where

y[nq8r5kusr ~13!

ands[r 0q8/q is the magnetic shear.
To take into account nonuniform poloidal rotation, o

should replacev with the Doppler shifted frequency

v2ku

dv0u

dr U
r50

r2
ku

2

d2v0u

dr2 U
r50

r2

in Eqs. ~11! and ~12!. As in Refs. 17 and 18, where it i
assumed thatk'

2 lDe
2 !1 andlDe

2 !re
2, the terms in Eq.~11!

that are denoted with underbraces can be neglected.
In the last term on the right-hand side of Eq.~11!, the

fact thatuFu'uGu can be used and the equation can be s
plified by replacingF by G. Then using the dimensionles
variables
-

V[
vR

ce
,

k[kure ,

Eq. ~11! can be rewritten in dimensionless form

H AS ]

]u
1 iy D 2

2B1C
]2

]y2 1 iD S ]

]u
1 iy D J G50, ~14!

where

A5
k

Vq2 F1

t S gTe2
2gne

3 D1
10

3 S 11
1

t Dgne2
V

k S 1

t
1

5

3D G ,
~15!

B5V2S 11
k2

t S 11
Ve

2

vpe
2 D D 1VkFgne22S 1

t
1

10

3 Dg~u!

2
k2

t S gne1gTe1
10

3
g~u! D G1

2k2g~u!

t FgTe2
7

3
gne

1
10

3
~11t!g~u!1

10

3
k2g~u!~gne1gTe!G ,

C5
k2s2

t FV2

t S 11
Ve

2

vpe
2 D 2VkS gne1gTe1

10

3 D
1

10

3
k2~gne1gTe!G , ~16!

D5
ks

qce

1

V

dv0i

dy
, ~17!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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where use has been made of the following notations:

vDe[
2kuTec

eBR
g~u!,

v* e[
kucTe

eB

gne

R
,

he[gTe /gne ,

gTe[2
R

Te

dTe

dr
,

gne[2
R

ne

dne

dr
,

g~u![cosu1 is~sinu!
]

]y
2am sin2 u, ~18!

and am52q2Rdb/dr is the Shafranov shift term resultin
from finite b effects in the equilibrium.

When D50, (]/]u1 iy)→]/]u, and C]2/]y2→
2Cu2, which is typical for the ballooning formalism, Eq
~14! coincides with Eq.~17! in Ref. 17 ~which is written
using a different dimensionless variable notation!. Also,
whenv2!k'

2 ci
2 andk'

2 lDe
2 !1, Eq. ~14! coincides with Eq.

~41! of Ref. 18 if g(u)51 and if t* and en in Ref. 18 is
identified witht and 2/gne in this paper.

In order to take into account the poloidal plasma ro
tion, one should replaceV by

V22Ky2Py2,

where

K[
vE

2s

R

ce
, ~19!

P[
R

2ks2Ve

dvE

dr
, ~20!

and

vE5
dv0u

dr
.

In the next section, Eq.~14! is analyzed in the strong
ballooning approximation~SBA!.

III. STRUCTURE OF ETG MODES IN THE STRONG
BALLOONING APPROXIMATION

In the ballooning formalism~see Ref. 25, for example!,
the functionG(y,u) is represented by the expression

G~y,u!5(
m

e2 imuE
2`

`

dheimhḠ~y,h!, ~21!

where

Ḡ~y,h!5G0~y! f ~h!e2 iy~h2hk!.

In this expression,G0(y) is an envelope, which will be ob
tained in the second order of the SBA.

The first order of the SBA produces a one dimensio
eigenvalue problem
Downloaded 02 Nov 2003 to 128.180.100.58. Redistribution subject to A
-

l

H A
]2

]h2 1 iD
]

]h
2B12C~h2hk!

2

1E@cosh2am sin2 h1s~h2hk!sinh#J f ~h!50. ~22!

In this expression,

E52kVF1

t
1

10

3
1

10

3t
k2G

2
2k2

t FgTe2
7

3
gne1

10

3
k2~gne1gTe!G , ~23!

and

B15V2~11k2de
2!1Vk@gne2k2~gne1gTe!/t#, ~24!

where

de
25

1

t S 11
Ve

2

vpe
2 D .

Note thatB12E5B(g(u50))[B0 .
By using the following transformation,

f ~h!5expS 2 i
D

2A
h D f 1~h!,

Eq. ~22! reduces to

H A
]2

]h2 1
D2

4A
2B12C~h2hk!

2

1E@cosh2am sin2 h1s~h2hk!sinh#J f 1~h!50.

In the strong ballooning limit, it is assumed that th
function f 1(h) is strongly localized near the valueh5hk ,
where the effective potential is minimum. Expansion of t
trigonometric functions nearh5hk , up to second order in
(h2hk)

2, yields

H A
]2

]h22S B12
D2

4AD1E@coshk2am sin2 hk#

2C1S h2hk2
E1

2C1
D 2

1
E1

2

4C1
J f 150, ~25!

where

E15E@~12s!sinhk2am sin~2hk!# ~26!

and

C15C1E~1/22s!coshk1Eam cos2 hk . ~27!

The effective potential in Eq.~25! has extremum at points
that satisfy the equation

hk52E1 /~2C1!. ~28!

One of the most important solutions of Eq.~28! is hk50, on
the outboard edge of the torus, whereE150 and the poten-
tial usually has the deepest minimum.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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A. The first order strong ballooning approximation

In the first order SBA, substitutinghk50 in Eq. ~25!,
yields

H A
]2

]h22S B12
D2

4AD1E2FC1ES 1

2
2sD Gh2J f 150.

~29!

Let B25B12E2D2/(4A) and C25C1E(1/22s), so that
Eq. ~29! can be rewritten as

H A
]2

]h22B22C2h2J f 150. ~30!

Equation~30! coincides with Eq.~41! of Ref. 18 after the
corresponding renormalization.

A particular physically relevant solution of Eq.~30! is
given by

f 15 f 0 exp~2sh2/2!, ~31!

where

s5AC2 /A52 iqVH k2s2

t FkS gne1gTe1
10

3 D2Vtde
2

2
10

3

~gne1gTe!

V
k2G1S 1

2
2sD F2kS 1

t
1

10

3
1

10

3t
k2D

2
2k2

tV S gTe2
7

3
gne1

10

3
k2~gne1gTe! D G J 1/2

3H S gTe2
2

3
gneD k

t
1

10

3 S 11
1

t D k2VS 1

t
1

5

3D J 21/2

.

~32!

In order to describe localized eigenmodes, the sign ofs in
Eq. ~32! should be chosen so that the real part ofs is posi-
tive ~Rs.0!.

If

k!V!kgTe ,

and

gTe@~1,gne!,

one can obtain an approximation

s52 iqVksF gne1gTe110/3

gTe22/3110~11t!k/3G1/2

, ~33!

which is similar to Eq.~46! in Ref. 18.
A necessary condition for the application of the SBA

usu@1, which may be verified after calculating the eigenva
V. In the first order of SBA, the dispersion relation forV is
given byB25AAC2, or

B02
D2

4A
5Bf , ~34!

where
Downloaded 02 Nov 2003 to 128.180.100.58. Redistribution subject to A
e

Bf52
i

qt H k2s2FkS gne1gTe1
10

3 D2
10

3

9gne1gTe

V
k2G

1S 1

2
2sD F2kS 11

10t

3
1

10k2

3 D
2

2k2

V S gTe2
7

3
gne1

10

3
k2~gTe1gne! D G J 1/2

3H S gTe2
2

3
gneD k1

10

3
~11t!k2VS 11

5t

3 D J 1/2

'2
isk2

qt H S gTe1gne1
10

3 D
3S gTe2

2

3
gne1

10

3
~11t! D J 1/2

. ~35!

The solution of Eq.~34! may be found using a perturbativ
method. In the zeroth approximation, one obtains the so
tion

V5V05V r01 iG0

of the local dispersion relation

B05B~g~u50!!50, ~36!

which was analyzed in Refs. 17 and 18.
For reactively unstable ETG modes, consideri

D2/(4A) and Bf as corrections in the first order SBA,
dispersion relation is obtained in the form

~11k2de
2!@~V2V r0!21G0

2#5
D2

4A
~V0!1Bf~V0!. ~37!

Separating real and imaginary parts of the right-hand side
Eq. ~37!, one obtains the equation

~V2V r0!21G0
25R1 i I . ~38!

The real and imaginary parts of the solutions of this equat
for unstable modes are

RV5V r01HAI 21~G0
22R!22~G0

22R!

2 J 1/2

~39!

and

IV5H ~G0
22R!1AI 21~G0

22R!2

2 J 1/2

. ~40!

The termI in Eq. ~38! usually corresponds to the influence
the magnetic shear, resulting in shear damping for a diss
tive drift wave or amplification for a reactive drift wave.

In the case of (G0
22R)2@I 2, Eqs.~40! and ~39! can be

simplified to

IV5~G0
22R!1/2F11

1

8

I 2

~G0
22R!2G ~41!

and

RV'
I

2~G0
22R!1/21V r0 . ~42!

This corresponds to the toroidal branch of the ETG mod
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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In the opposite case, withI 2@(G0
22R)2, one has the

slab-like branch of the mode

IV'R~V2V r0!'I /&. ~43!

The transition from the toroidal branch to the slab-li
branch occurs ats;2q, where s!2q corresponds to the
toroidal branch.26,17,18

Some approximations for the ETG mode can be m
well above the threshold where

G0
25

2tk2gTe

11k2de
2 '2tk2gTe@V r0

2 . ~44!

In this limit, the condition can be found where the stro
ballooning approximation is valid. Using the approximatio

usu'qksG0'k2qsA2tgTe, ~45!

for s2@1, it is determined that the following inequalit
must be satisfied:

k2.@sqA2tgTe#
21. ~46!

Note that for the toroidal branch, wheres/2q!1, the correc-
tion to the growth rateG0 caused by theBf term must be
small

uBf /G0
2u;

s

2t2q
!1.

If the two terms on the right-hand side of Eq.~37! are
compared, it can be shown that

UBfY D2

4AU;U4sA2

D2 U@1,

where

D5
ks

qceV

dv0i

dy
5

1

qVVe

dv0i

dr
,

and

uAu;
kgTe

uVuq2 .

Thus, the growth rate of the ETG mode changes, as a fu
tion of sheared toroidal rotation (dv0i /dr), even more
weakly than as a function of magnetic shear. In the follo
ing, terms of orderD2 are neglected for simplicity.

Finally, consider the spatial structure of the ETG mo
as it is given by the first order SBA, whereG0(y) is con-
stant. In this approximation, the modeG(y,u) in Eq. ~21!
involves many poloidal harmonics:

G~y,u!5(
m

e2 imuA2p

s
f 0 expS 2

~y2m!2

2s D . ~47!

The sum overm may be replaced by an integral multiplie
by 1/2p, which yields

G~y,u!5 f 0 exp@2su2/21 iyu2y2/s#. ~48!

After integration, the eigenmode ‘‘loses’’ its periodicit
However, Eq.~48! is valid because the mode is strong
localized nearu50.
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Thus, the ETG mode in SBA has a width in radial dire
tion: ȳ5As or for the dimensional radial variable,

r̄5As/kus. ~49!

Equation~49! has been used in Refs. 17 and 18 for the ch
acteristic width of the ETG mode. This width is of the ord
of the electron Larmor radius, and it is too small to expla
anomalous electron heat conductivity. A correct approxim
tion for the mode radial width can be obtained in the seco
order of SBA, which takes into account spatial variation
the plasma parameters—in particular, strongly nonunifo
backgrounds flows.

B. The second order strong ballooning approximation

The local dispersion relationV(hk ,y) obtained in the
first order SBA may be written in a form where the nonun
form background flow is taken into account:

B12E~coshk2am sin2 hk!2
E1

2

4C1
5Bf . ~50!

Here, in Eqs.~24!–~27! for B1 , E, E1 , and C1 , V is re-
placed byV22Ky2Py2. As it has been previously ob
served, under the condition given by Eq.~46!, the functionf 1

is strongly localized ath5hk50, which corresponds to a
strong localization of the modeG(y,u), Eq. ~21!, in the
poloidal direction atu50. Because of this, Eq.~50! can be
expanded nearhk50 to obtain

B01E2hk
25Bf , ~51!

where

B05B12E5@~V2V r022Ky2Py2!21G0
2#~11k2de

2!
~52!

and

E25S 1

2
1am1

E~11s22am!2

4@C1E~1/22s1am!# DE. ~53!

The termE2hk
2 produces a small correction to the eige

value becauseuE2u<G0
2 andhk

2!1. Using this fact, the loca
dispersion relation, Eq.~51!, can be rewritten as

V2V r022Ky2Py2

' iG0A12
Bf2E2hk

2

G0
2~11k2de

2!

' iG0F12
Bf

2G0
2~11k2de

2!
2

Bf
2

8G0
4~11k2de

2!2

1
E2hk

2

2G0
2~11k2de

2!G . ~54!

In the case withK5P5E250, the result in Eq.~41! is re-
covered for the growth rate, usingBf' i I .

To obtain the differential equation that describes t
mode structure, it is sufficient to replacehk

2 in Eq. ~54! with
the operator2]2/]y2 or, equivalently, to replacey on the
left-hand side of Eq.~54! with the operator2 i ]/]hk ~see
Refs. 20 and 22, for example!.
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The coefficientsE2 , and Bf will be considered as de
pending onV0' iG0 ~i.e., V is replaced byiG0). Then, the
eigenvalue problem in the second order SBA is reduced
the equation,

iL
d2G0

dy2 1~V2V02 iG11K2/P!G01P~y1K/P!2G050,

~55!

where

L[
E2

2G0~11k2de
2!

'
E~am11/2!

2G0~11k2de
2!

'2
k

t3/2

AgTe~am11/2!

&
, ~56!

and

G15G0F12
Bf

2G0
2~11k2de

2!
2

Bf
2

8G0
4~11k2de

2!2G
'G0F12

AA@C1E~1/22s!#

2G0
2~11k2de

2!
G .

It is assumed in Eq.~55! that the radial derivative of poloida
flow shear rate is essential. Equation~55! is not applicable to
the case whenP is very small or zero. These asymptot
cases were considered in Refs. 11 and 12.

The background eigenfunction of Eq.~55! is

G0~y!5expF2
k

2
~y1K/P!2G , ~57!

where

k5AiP/L. ~58!

The sign in this expression fork should be chosen such th
Rk.0. The corresponding eigenvalue is

V5V r01 iG12K2/P2 i
APL

2&G0~11k2de
2!

'V r01 iG02
K2

P
2

iAA~C1E~1/22s!!

2G0~11k2de
2!

2
iAPL

2&G0~11k2de
2!

. ~59!

Let us estimate the effect of the nonuniform backgrou
flow, which is described by the parameterP defined by Eq.
~20!. According to Fig. 2 in Ref. 1 and Fig. 2 in Ref. 2, on
can approximate

S a

Ve

dvE

dr D 1/2

'
1

600
,

where a is the minor radius of the plasma. Using this a
proximation, one can show that the following inequalities a
valid:
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UAPL

G0
U'UAPE

G0
UA112am

'
1

2st S RdvE /dr

Vekure
D 1/2

~112am!1/2!1,

and

U K2

PG0
U' R2vE

2

2ce~2tgTereudvE /dru!
!1.

Thus, the influence of nonuniform background flows
the growth rate of the ETG mode well above threshold
negligible. However, not far from marginal stability, the la
term in Eq.~48! @;2 iAPL/G0# produces a stabilizing ef
fect, which becomes stronger in plasmas with a large Sha
nov shift, especially when combined with the effect of sm
magnetic shears. Background flows determine the mod
structure in the radial direction. In the second order SBA,
spatial mode structureG(y,u), Eq. ~21!, is given by

G~y,u!5expF2
su2

2
1 iyu2

k

2
~y1K/P!2G . ~60!

From Eq.~60!, one obtains the square of the characteris
size of the mode in the radial direction,

ȳ25ku
2s2r̄25uku215ULPU

1/2

,

whereL is given by Eq.~56! andP is given by Eq.~20!.
Well above the threshold,uEu and uCu can be approxi-

mated

uEu'2k2gTe /t, ~61!

and

uCu'k4s2gTe
3/2t21/2. ~62!

Thus

UECU' 2

k2s2AtgTe

5
23/2q

ss
,1 ~63!

if s/(23/2q).s21. In this case,L'E( 1
21am).

Finally the following estimate for the square of the cha
acteristic mode width is obtained

r̄2

re
2 5

AgTe

sAkt
S Ve

RdvE /dr D
1/2

'
600

s S agTe

Rkt D 1/2

, ~64!

wherea andR are minor and major radii of the torus. Thu
the characteristic width of the mode is much larger than
electron Larmor radius,r̄@re , for typical parameters such
asAagTe /R>2, kt;1, ands<1/2.

The width of the mode in terms of the dimensionle
variableȳ is large:

ȳ'ks~ r̄/re!@1,

which means that each mode extends through many ne
boring rational surfaces. The shift of the mode localizati
from the pointy50 is given byK/P, which is of order
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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UKPU;Uku

vE

dvE /drU@1,

which is much smaller than the mode characteristic widthȳ.
The radial width of the ETG mode given in Eq.~64!

goes to infinity if the magnetic shear,s, goes to zero. How-
ever, the validity of this expression is restricted to values
magnetic shear that are not very small. The SBA method
be used only if the requirement in Eq.~46! is fulfilled. In
order to extend the region of applicability to smaller valu
of magnetic shear, the direct method is used in the next
tion.

IV. DIRECT METHOD

In this section the starting point is again the basic
equation, Eq.~14!, which is now rewritten as follows:

H ]2

]y22SS ]

]u
1 iy D 2

1a@g~u!21#12iK 0S ]

]u
1 iy D2GJ G

50, ~65!

where

S[2
A

C
, K0[

D

2C
, a[

E

C
,

G5
@~V2V r022Ky2Py2!21G0

2#~11k2de
2!

C

'
2iG0@V2V r02 iG022Ky2Py2#~11k2de

2!

C

5l12cy1py2, ~66!

andg(u) is given by Eq.~18!, where the Shafranov shift i
now taken to be zero, that is,am50, for simplicity. The
values ofA, C, D, andE are given by Eqs.~15!, ~16!, ~17!,
~23! with V replaced byV22Ky2Py2. In Eq. ~66!, the
notation is

l5
2iG0~V2V r02 iG0!~11k2de

2!

C
, ~67!

c52
2iG0K~11k2de

2!

C
,

and

p52
2iG0P~11k2de

2!

C
.

The expression forG is simplified by taking into accoun
the consideration presented in the previous section. In
ticular, under conditions well above the threshold, the grow
rate of the ETG mode is not changed very much by nonu
form plasma rotation or by the term that describes the ef
of magnetic curvature~;a!. This property is qualitatively
different from that associated with the ITG mode, which c
be stabilized by a nonuniform plasma rotation, as was sho
in Ref. 10.
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The procedure described in Ref. 12 is followed for t
case withpÞ0. The Fourier expansion of the eigenfunctio
G,

G~y,u!5(
m

CmGm~y!eimu, ~68!

yields a set of equations for the coefficientsCm and the func-
tions Gm(y),

CmLmGm2
a

2 FCm11Gm111Cm21Gm2122CmGm

2sS Cm11

]Gm11

]y
2Cm21

]Gm21

]y D G50, ~69!

where

Lm[
d2

dy22l1S~m1y!222K0~m1y!22cy2py2.

~70!

With the assumption that the terms in Eq.~69! that are
proportional toa are small, eigenfunctionsGm(y) in the first
approximation of the direct method are obtained as soluti
of the 1D eigenvalue equations in a mixed (m,y) space,

LmGm
~n!5lm

~n!Gm
~n! . ~71!

The background eigenfunction (n50) has the form

Gm
~0!5expF2

i

2
AS2p~y1ym!2G , ~72!

where

ym5
mS2~c1K0!

S2P
.

The sign before AS2p must be chosen so tha
R( iAS2p).0. The background eigenvalue of Eq.~71! is

lm
0 52l2 iAS2p

2
pm2S22~c1K0!mS1~c1K0!2

S2p
. ~73!

Looking for solutions of the full set of Eq.~69! as Gm

5Gm
0 1Gm

1 , whereGm
1 is a function that is orthogonal toGm

0 ,

E
2`

1`

Gm
0 Gm

1 dy50,

and assuming

E
2`

1`

uGm
1 u2dy!E

2`

1`

uGm
0 u2dy, ~74!

equations for the coefficientsCm are obtained from Eq.~68!,

lm
0 Cm5aS V

2
~Cm111Cm21!2CmD , ~75!

where the matrix elementV is given by
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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V5
*2`

1`Gm
0 ~Gm21

0 1s]Gm21
0 /]y!dy

*2`
1`uGm

0 u2dy

5S 11
isS

2AS2p
D expS 2

iS2

4~S2p!3/2D . ~76!

As in the case withp50, considered in Ref. 11, the matri
elementV with pÞ0 does not depend onm.

For the ordering in Eq.~74! to be valid, it is sufficient
that

ua~V21!u!AuSu ~77!

in the case where the coefficientsCm depend only weakly on
m, which corresponds to the case of ballooning modes.
termaCm can also be included into the left-hand side of E
~71!, as it was done in Refs. 11 and 12. This yields anot
sufficient condition for the validity of this method,

uaVu!AuSu, ~78!

which is valid even whenCm is strongly dependent onm.
Solutions of the set of equations represented by Eq.~75!

were analyzed in Refs. 12 and 27. This set of equations, w
lm

0 given by Eq.~73!, is equivalent to the second order di
ferential equation,

p
d2g

du222i ~c1K0!
dg

du
1bg22dg cosu50, ~79!

where

g~u!5(
m

Cmeimu

is the generating function and where

b52
S2p

S Fl2a1 iAS2p1
~c1K0!2

S2p G
and

d5
aV

2

S2p

S
.

The transformation of the functiong(u),

g~u!5F~u!expF i
~c1K0!u

p G , ~80!

and the change of the independent variable tou52Z are
used in order to reduce Eq.~79! to the standard Mathieu
equation,

d2F
dZ2 1~a22q0 cos~2Z!!F50, ~81!

wherea[4A0 , q0[24Q,

A0[
b

p
2

~c1K0!2

p2 ,

and

Q[2
aV

2

S2p

pS
.
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Eigenfunctions of Eq.~79! should be 2p-periodic func-
tions of u. They correspond to Floquet solutions of Eq.~81!
of the form

F~z!5Fn~z!5exp~ inz!P~z!,

wheren522(c1K0)/p and P(z) is a function ofz with
period p ~since z5u/2). The solution of this eigenvalue
problem depends on the value of parameterq0 , or Q, with
variablea in Eq. ~81! considered as an eigenvalue.

In order to estimate the value of parameterQ,

V5 iG0' ikA2gTet

is substituted into coefficientsA, C, E, and it is assumed tha
gTe@gne . Then, the coefficientsA, C, andE can be written

A'2
igTe

1/2

2t3/2q2 , C'2 iA2

t
k4s2gTe

3/2, E522k2
gTe

t
,

and

S52
1

s2 '2S scrit

k2sD
2

,

where scrit[uq(2tgTe)
1/2u21. Thus, if the condition in Eq.

~46! is valid, it follows that

uSu!1 ~82!

and if s/(2q).uSu1/2, then

uau5UECU' 2quSu1/2

s
,1. ~83!

Note that for typical values of tokamak parameters,

Up

SU5U2G0P

CS U5U R

ks2AVe

dvE

dr U5U Rt3/2q2

Vek
2s2gTe

1/2

dvE

dr U!1.

~84!

Now the matrix elementV can be estimated,

V5F11
isS

2AS2p
GexpH 2

iS2

4~S2p!3/2J
'F11

isS1/2

2 GexpS 2
iS1/2

4 D'F11
scrit

2k2GexpH 2
scrit

4k2sJ .

~85!

If uSu!1, which is the case when SBA holds, then

V'11
i

2 S s2
1

2DS1/2, ~86!

so thatuV21u!1, and

ua~V21!u,uSu1/2. ~87!

The condition in Eq.~87! coincides with the sufficient con
dition given in Eq.~77! for the applicability of the DM if
uSu!1. Thus, if SBA is applicable, the same is true for t
DM.

In the caseuSu@1, where SBA is violated, the matrix
elementV becomes exponentially small,

V'S 11
scrit

2k2DexpH 2
scrit

4k2sJ !1 ~88!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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for

uS1/2u'
scrit

k2s
.4. ~89!

Also

U aV

S1/2U!1

under the condition in Eq.~88!. Thus, in the caseuSu@1, DM
is also valid, according to the sufficient condition in Eq.~78!.

In the caseuSu!1, the parameterQ is large

uQu;UaV

2pU;U a

2pU;U Ve

kgTe
1/2dvE

dr
RU@1

for typical tokamak plasmas. However, in the caseuSu@1,
where the magnetic shear satisfies the condition

s!
scrit

4k2 ,

it is possible thatuQu!1.
Let us now compare the influence of the poloidal a

toroidal shear plasma flows,

U c

K0
U'U4G0K

D U'U2G0
2qR

sre

vE

dV0i

dr
U'U2tk2gTeq

s

R

r

vE

dV0i

dr
U ,

so thatucu@uK0u if udV0u /dru andudV0i /dru are of the same
order of magnitude.

In the next two subsections, the eigenvalue problem
examined by DM in two limiting cases,uQu@1 and
uQu!1.

A. Case A: zQzš1, k 2sšs crit

In this case, the eigenvalueV of the problem is given by
the dispersion relation

A0522Q1Q1/2 ~90!

or

l5a~12V!2 iAS2p1
S1p

S2p

~c1K0!2

p
2 i F apVS

2~S2p!G
1/2

'a~12V!2 iS1/21
c2

p
2 i S apV

2 D 1/2

. ~91!

In the last approximation, account was taken of the fact t
upu!uSu, ucu!uK0u.

The expression forl in Eq. ~67!, the expression forV in
Eq. ~86!, and the expressions fora, c, r in terms ofA, B, C,
P, andK are substituted into Eq.~91! to yield

V5V r01 iG02
iAAC

2G0~11k2de
2!

2
iE~ 1

22s!

4G0~11k2de
2!

2
K2

P
2

iAPE

G0~11k2de
2!

. ~92!
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Under the condition of Eq.~83!, uEu!uCu, the term pro-

portional toAA@C1E( 1
22s)# in Eq. ~59!, which was ob-

tained in SBA, can be expanded as a series inuE/Cu. It then
follows that the results for the eigenvalue obtained by S
and DM coincide. This is natural because both methods
applicable for case A.

The spatial structure of the mode given by Eq.~65! with
K050 was described in detail in Ref. 12. In the lim
upu!uSu andQ@1, this spatial structure coincides with th
one described by the SBA method, given by Eq.~60!. In the
next subsection the limitQ!1, where SBA is not valid, is
considered.

B. Case B: zQz™1, k 2s™s crit

If uQu!1, a solution of Eq.~79! can be obtained as a
expansion,

g~u!511C1eiu1C21e2 iu1C2ei2u1C22e2 i2u1¯

~93!

since the coefficientsC6 l decay rapidly withl in this case.
Only the first three terms in the series on the right-ha

side of Eq.~93! are retained and substituted into Eq.~79!.
Terms proportional toe6 iu are equated, yielding

C1'
d

2c2p
, C21'2

d

2c1p
, ~94!

whered5aV/2'Qp andudu!(ucu,upu). The corresponding
eigenvalue is determined by the dispersion relation,

b52
2d2p

4c22p2 . ~95!

In the case withp50, it is found that

g~u!'11
id

2c
eiu2

id

2c
e2 iu'expF2 i

d

c
sinuG . ~96!

The solution for Eq.~96! was found in Ref. 11 for the
case of a velocity profile that is linear in the minor radius.
this limiting case, Eq.~79! reduces to a first order differentia
equation. The periodicity requirement in poloidal angle
the modes yields one restriction on the frequency, but i
not enough for a full determination of its real and imagina
parts. Also, the position of the mode center,r 0 , remains
uncertain. For example, for dissipative drift electron mod
this restriction can define the growth rates, but leaves the
frequency dependent on the arbitrary value ofr 0 .11,22 This
difficulty does not arise when accounting for the nonlinear
of the background velocity profile, or when

dvE

dr
;pÞ0.

The dispersion relation~95! determines both the real an
the imaginary parts of the frequency of the backgrou
mode. With the definitions ofb and d given after Eq.~79!,
Eq. ~95! can be rewritten in the form
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2iG0~V2V r02 iG0!~11k2de
2!

5E2 iA2AC2
c2C2

A
1

E2V2

2~c22p2!C2 , ~97!

with

V25~4tgTek
4q2!21 expS 2

iS1/2

2 D , ~98!

S'2S scrit

k2sD
2

, R~ iS1/2!.0.

The first two terms on the right-hand side of the dispers
relation in Eq. ~97! do not change significantly with th
growth rate of the ETG mode:

U E

2G0
2U;UgTe2

7
3 gne

2t2gTe
U,1, UAAC

2G0
2 U; s

2t2q
!1. ~99!

Also, it can be seen that the influence of flow shear (vE

;c) on the ETG mode is usually rather small since

c2C2

2AG0
2 ;

R2vE
2t3/2q2

2s2ce
2gTe

1/2 ,1

for

c25
R2vE

2

4s2ce
2,1025

ands2gTe
1/2/(t3/2q2).1025.

The influence of the last term in Eq.~97! is exponen-
tially small. As will be shown below, poloidal harmonic
become strongly localized with respect to the distance
tween mode rational surfaces and the toroidal coupling
comes negligible. Similar behavior is found for the IT
mode for very small values of magnetic shear,s, which was
pointed out in Ref. 20. Here, a straightforward derivation
the dispersion relation will be given and the mode struct
using the DM in the case under consideration, where SB
not valid, will be determined.

The spatial structure of the mode is determined by
Fourier transform of the generation functiong(u), which
directly yields coefficients of the original eigenfunctio
G(y,u), Eq. ~68!:

Gl~y!5E g~u!e2 i lydu. ~100!

Using Eq.~93!, the eigenfunctionG(y,u) can be written as

G~y,u!5G0~y!1C1G1~y!eiu1C21G21~y!e2 iu,
~101!

where the coefficientsC61 are given by Eq.~94! andGl(y)
( l 50,61) are given by Eq.~72!.

Thus, Eq.~101! can be rewritten as
Downloaded 02 Nov 2003 to 128.180.100.58. Redistribution subject to A
n

e-
e-

f
e
is

e

G~y,u!5expF2
iAS2p

2 S y2
c

2 D 2G1
d

2c2p

3expF iu2
iAS2p

2
~y1y1!2G2

d

2c2p

3expF2 iu2
iAS2p

2
~y2y21!2G , ~102!

where

y15
S2c

S2p
, and y2152

S1c

S2p
. ~103!

SinceuSu@ucu and uSu@upu, the following result is obtained
for G(y,u):

G~y,u!5expF2
iAS

2 S y2
c

2 D 2G
1

d

2c2p
expF iu2

iAS

2
~y11!2G

2
d

2c1p
expF2 iu2

iAS~y21!2

2 G . ~104!

Note that the conditionR( iAS).0 applies in this equation
Equation~104! can be simplified further by taking into

account the fact thatucu@p and ucu!1:

G~y,u!'e2 i ~AS/2!y2
1

d

c

3expS 2
iAS~y211!

2
D sin~u2ASy!. ~105!

The second term on the right-hand side of Eq.~105! may
cause amplification or reduction of zonal flows.

It follows from Eq. ~104! that the structure of the mode
G(y,u), changes dramatically compared with the result
the previous case A. In this case B, the parameterS is large:

uSu;S scrit

k2sD
2

@1.

Thus the characteristic dimensionless width of each h
monic term in Eq.~104! is

ȳ;uSu21/45usu1/2!1,

and the dimensional radial variable is given by Eq.~49!. The
characteristic width of the ETG mode in the regions of sm
magnetic shears becomes of the order of electron Larm
radius,re , and much less than in case A.

The main contribution to the mode in case B is given
the first term in Eq.~104!, which describes the mode loca
ized near the mode rational surface atr 5r 0 , whereq(r 0)
5m/n. The spatial structure expands uniformly over the p
loidal direction. Other terms are exponentially small. Th
describe the structure of poloidal harmonicsm61, which are
strongly localized near the positions of their mode ratio
surfacesq5(m61)/n.
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V. CONCLUSIONS AND DISCUSSION

It was found that well above threshold (gTe@1), the
growth rate of the ETG mode changes only slightly in t
presence of nonuniform plasma rotation, in the balloon
regime as well as in the opposite case, where the mode is
localized in the poloidal direction. However, the spat
mode structure is strongly influenced by background flo
with a velocity profile that varies nonlinearly with mino
radius. This case has been analyzed using both strong
looning and direct methods.

The structure of the mode was investigated in the fi
order of the SBA in Refs. 17 and 18. It was found that t
characteristic size of the mode is of orderusu21/2 in the po-
loidal direction, where the parameters is determined by Eq.
~32!. In the derivation, account is taken of the presence
impurity and superthermal ions, which lead to a redefinit
of t compared to the definition given in earlier work, as w
as in the definition of the Shafranov shiftam , which contrib-
utes to a small reduction of the ETG growth rate. F
strongly unstable ETG modes,usu is given by Eq.~45!.

In a general case, the strong ballooning formalism c
not be applied to the toroidal drift modes in the presence
nonuniform flows. However, it has been shown by apply
the second order SBA and DM to the same case~case III B
and, more precisely, in the case IV A! that the SBA works if
the ETG mode is strongly localized in the poloidal directio
Specifically, the ETG mode withku

2re
2&1 is strongly local-

ized in the poloidal direction, and the SBA is valid ifusu@1
or

s@scrit . ~106!

For toroidal ETG modes, the magnitude of the magne
shear is also restricted by inequalitys,1/2q. The character-
istic mode width in the radial direction17,18 is of the order of
the electron Larmor radius in the absence of backgro
flows. With the effect of nonuniform background flows tak
into account, the characteristic size of the mode in the ra
direction is estimated, when the condition in Eq.~106! is
fulfilled, using both the second order SBA and the DM tec
niques. Both methods yield similar results. Namely, the ch
acteristic size of the mode is found to be

r̄;~kus!21
L1/4

P
, ~107!

whereP is given by Eq.~20!, and L is given by Eq.~56!.
Note that this size depends strongly on the parameteP,
which is proportional to the first derivative of the flow she
rate (P;dvE /dr).

Generally speaking, the mode structure depends
many parameters that enter throughP and L, such as the
safety factor, magnetic shear, gradients of the electron t
perature and density, and Shafranov shift. A simplified f
mula, Eq.~64!, is obtained for this size, assuming that t
ETG mode is well above the threshold of the instabil
@gTe@(gne,1)#. The radial size of the mode is approximate
50 times larger than the electron Larmor radius. Such a ra
size is rather typical for streamers, as observed in the
merical simulations reported in Ref. 8. This may explain w
Downloaded 02 Nov 2003 to 128.180.100.58. Redistribution subject to A
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the electron heat transport in the plasma core is much la
than that given by a simple mixing rulexe5g0 /k'

2 with
k';re

21. Indeed, for the ETG mode described above a
solution of the two-dimensional problem, Eq.~14!, the char-
acteristic value ofk' is equal tor̄21!re

21 according to the
estimate given by Eqs.~107! and ~64!. The enhanced elec
tron thermal diffusivity may drive the temperature profi
toward the marginal electron stability boundary. A critic
parameter for the linear theory is not the magnetic sh
itself, but the relation among the magnetic shear, the sa
factor and the electron temperature characteristic len
Even when the magnetic shear is less then unity, the co
tion in Eq.~106! can still be satisfied and streamer-like stru
tures can be formed. These conditions can explain some
perimental observations that electron thermal transp
remains anomalous in the central regions with small sh
where an ITB in the ion channel forms. For example, with
the internal transport barrier the temperature gradient s
length could be 0.06 m and the major radius can be 3.0 m
that gTe550. Then, if q52 and t51, scrit5(2350)21/2

50.1. In this case, a magnetic shear of few tenths will
several times larger thanscrit and several times smaller tha
unity (scrit!s!1). The parameters for this example are typ
cal for Joint European Torus~JET! discharges with the inter
nal transport barriers@see, for example, the simulation of th
JET discharge 40542~Ref. 7!#. Also, some experimental re
sults from DIII-D ~Ref. 1! suggest that the magnetic shear
low and varies over the range20.16,s,0.6 within the in-
ternal transport barrier. Case A (uQu@1 andk2s@scrit) can
be applied to the plasma within the ITBs, where the magn
shear is of order of 0.6. Thus, the condition for case A can
satisfied when the electron transport remains strong.

The case of small magnetic shear,s, was considered un
der the condition opposite to that given by inequality in E
~106!. In this case~usu!1!, the structure of the ETG mod
changes significantly. It is extended in the poloidal directio
and the SBA method is not applicable. This case was stud
in a straightforward manner using the DM. For a sufficien
small magnetic shear, toroidal coupling becomes expon
tially weak, and the ETG mode becomes strongly localiz
in the radial direction. Under these conditions, the charac
istic size of the ETG mode,r̄, is given by

r̄;~kus!21usu1/2, s!~q~2tgTe!
1/2!21, usu!1,

~108!

which coincides with the size of the ETG moder̄m , given in
Eq. ~49!, which was obtained in the opposite strong balloo
ing limit, s@1, in the first approximation, or in the absen
of nonuniform plasma rotation. Equations~49! and~108! co-
incide only formally, because the first formula@Eq. ~49!# is
valid for large values of the parameters, and the second
formula@Eq. ~108!# is valid for small values of the paramete
s. The poloidal structure of the modes is quite different
these two cases. Equation~49! describes the radial structur
of the ETG mode whenuQu@1 andk2s@scrit ~case IV A! in
the first order SBA, while Eq.~108! describes the radia
mode structure in the opposite case whenuQu!1 and k2s
!scrit ~case IV B!. In the presence of nonuniform back
ground flow in case IV A, the first order SBA is insufficien
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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to determine the radial mode structure. In this instance,
should use the second order SBA or, alternatively, the m
rigorous DM. Both methods give the same result, but use
the DM helps in understanding the difference between
radial widths obtained in the first order SBA@Eq. ~49!# and
the radial width obtained in the second order SBA@Eq. ~64!#.
Equation~49! gives the radial width of each separate pol
dal modem @see Eq.~72!#. The coupling between many dif
ferent poloidal modes due to nonuniform flow is not tak
into account at this point in our derivation. However, ifuQu
@1 and k2s@scrit ~case IV A!, many poloidal modes take
part in the formation of the global mode structure. This co
pling was shown in detail in Ref. 12, where the sum over
mode numbersm in Eq. ~68! was calculated. Thus, the glob
mode in this limit~case IV A! is composed of a large numbe
of poloidal m-modes, each of which is localized around
rational magnetic surface. The distance between these r
nal magnetic surfaces is smaller than the spatial width
m-modes and, consequently, they overlap. It has been sh
in this paper, that ifuQu!1 andk2s!scrit ~case IV B!, the
radial structure of the ETG mode can be described only
the direct method. In this limit of very small magnetic she
(k2s!scrit), the coupling between different poloidal mod
becomes exponentially small, and only a few modes t
part in the formation of the mode structure@see Eq.~102!#.
As a result, the distances between different rational surfa
which are inversely proportional tos, become large com
pared to the radial width of each drift mode. Hence, for c
IV B, the mode becomes strongly localized near its ratio
surface and is nearly insensitive to nonuniform backgrou
flows. Thus, for case IV B, the radial width given by E
~108! does not depend on the nonuniform flow paramete
Consequently, the result for the radial width given in ca
IV B coincides with the result given in Eq.~49!, where the
nonuniform background flows are not taken into accou
However, when nonuniform background flows are taken i
account Eq.~49! is no longer valid, and the result for th
radial width is given by Eq.~107!. The difference in results
given by Eq.~49! and Eq.~107! illustrates the role of non-
uniform flows.

The characteristic radial size of the ETG mode becom
of the order of the electron Larmor radius in the limit
very small magnetic shear, whenuQu!1 and k2s!scrit . It
is expected that the electron heat transport will be stron
reduced in this case, and the formation of an electron tra
port barrier may result. This conclusion correlates with e
perimental observations of enhanced plasma confinem
in regimes with low magnetic shear. Transport barriers
often formed close to the radius where safety factorq is
minimal. It should be noticed however, that the parametes
depends intrinsically on the magnetic shear and the magn
shear can become so small thatkus,usu1/2. Under these cir-
cumstances, the characteristic radial width becomes la
than the electron Larmor radius and the electron ther
transport becomes large inside the region of small magn
shear.
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Many present day tokamaks have elongated magn
surfaces. The effect of elongation described in Ref. 28 m
be take into account qualitatively if the operatork̂'

2 in Eq.
~11! is written,

k̂'
2 5ku

2S 12s2
]2

]y2D ~109!

is replaced by

k̂'
2 5ku

2S 12s1
2 ]2

]y2D , ~110!

where

s1
25~2s211~s21!2k2!, ~111!

and wherek is the elongation of the magnetic surface. No
that s1.s for k.1.

Accordingly, the factork2s2/t before the square bracke
in the definition of coefficientC, Eq.~16!, should be replaced
by k2s1

2/t. Also, the dimensionless variabley5kusr be-
comesy5kus1r. With this in mind, the magnetic shear pa
rameters should be replaced bys1 in Eqs.~107! and ~108!,
which describe the characteristic radial widths of the ET
mode. Consequently, the following qualitative result is o
tained for both limits considered in this paper: the charac
istic radial width of the ETG mode is reduced as the elon
tion parameterk is increased.
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