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Abstract
An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated
modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is
developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for
the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON
code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE
code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are
the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two
equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable
region in the high triangularity discharge covers a much larger region of parameter space than the corresponding
stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously
developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the
time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of
low and high triangularity discharges are observed to increase with increasing heating power. There is a transition
from second stability to first ballooning mode stability as the heating power is increased in the high triangularity
simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD
stability code NIMROD.

PACS numbers: 52.35.Py, 52.55.Fa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the development of integrated modelling of the core
of tokamak plasmas, impressive agreement with experimental
observations has been achieved using different transport
models such as the multi-mode (MM), GLF23 and mixed
Bohm/gyro-Bohm (or JET) transport models [1–3]. Models
are now being developed to simulate the physics of the
edge of tokamak plasmas. Wide ranges of time and length
scales need to be considered and many different elements

of physics are involved at the plasma edge. The physics
topics that are critically important for the plasma edge
are the transition from low- to high- confinement regime
(L–H transition), H-mode pedestal build up, anomalous and
neoclassical transport at the plasma edge, role of the �Er × �B
flow shear and triggering and dynamics of the edge localized
modes (ELMs). None of these problems is completely
understood. Numerous theories, hypotheses and ideas are
being considered for each of these problems. One of the
effective ways to test ideas for physics models is to combine
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them within an integrative modelling code and compare the
simulation results with the experiments. Integrated modelling
studies that self-consistently take into account the effects of
the plasma edge have been developing during the last decade
[4–8]. Some of these simulations are rather comprehensive and
take into account MHD equilibrium, turbulent anomalous and
collisional neoclassical radial transport, neutral gas transport,
atomic and molecular physics and plasma–wall interactions.

A new model for the H-mode pedestal and ELMs has been
recently developed by Pankin et al [8]. The model predicts
the height, width and shape of the H-mode pedestal as well
as the frequency of the ELMs. The model for the H-mode
pedestal in tokamak plasmas is based on flow shear reduction
of anomalous transport. The formation of the pedestal and the
L–H transition in this model are the direct result of �Er × �B
flow shear suppression of transport.

Edge localized modes (ELMs) are among the determinant
factors at the plasma edge that affect the whole plasma profiles,
since up to 10% of the plasma energy can be removed by a
single ELM crash. An ELM crash can be initiated either by
a pressure driven ballooning instability or by a current driven
peeling instability [9, 10]. Two mechanisms for triggering of
ELMs have been considered in the model for ELMs [8]. ELMs
are triggered by ballooning modes if the pressure gradient
exceeds the ballooning limit or by peeling modes if the edge
current density exceeds the peeling mode criterion. The model
for the pedestal and ELMs has been used in a predictive
integrated modelling code to follow the time evolution of
tokamak discharges from L-mode through the transition from
L-mode to H-mode, with the formation of the H-mode pedestal,
and, subsequently, the triggering of ELMs.

The model for the H-mode pedestal and ELMs [8] is
advanced in this paper. The ELM triggering conditions
are studied with the MHD stability codes BALOO [11],
DCON [12] and ELITE [13]. These MHD instability codes are
used to compute the combined peeling–ballooning threshold,
which are then used to derive fitting expressions that are
included in the model. Using these computed MHD instability
criteria produces a more accurate ELM trigger model. In
particular, the ballooning criterion implemented previously is
valid only in the first ballooning stability limit, while many
recent DIII-D discharges operate in the second stability domain
[14]. In the previous study [8], a simplified expression for
the first ballooning stability limit was used, and the second
ballooning stability limit was not implemented. Also, for the
peeling stability criteria, a simplified analytical formula, that
was valid in only a limited parameter range was used. The
improved stability criterion model is implemented and used in
the integrated modelling code ASTRA [15]. Cases with low
and high triangularity are considered.

The intent of this paper is to show the development of a
new model for parametrization of the MHD stability condition
used to trigger ELMs, to describe the implementation of this
model in the ASTRA code and to illustrate its use by carrying
out simulations of low and high triangularity plasmas. In the
stability analysis, it is found that the peeling and ballooning
stability properties of high and low triangularity plasmas differ
significantly. In order to illustrate the effect of MHD stability
on the ELM characteristics, simulations with the integrated
code, ASTRA, are carried out. These simulations are not meant

to match precisely experimental conditions. Although the
equilibria that we use are based on DIII-D geometry (i.e. major
radius, minor radius, elongation and triangularity) and the
density and heating profiles are taken from a low triangularity
DIII-D discharge, there is no other connection to experimental
data. Consequently, comparison between the simulations in
this paper and experimental data is beyond the scope of the
paper.

This paper is organized in the following manner. In
section 2, a model for the H-mode pedestal and ELMs is
introduced. The model is based on �Er × �B flow shear
suppression of anomalous thermal transport. Two ELM
triggering mechanisms are considered: ELM crashes are
caused either by ballooning mode instabilities or by peeling
mode instabilities. Section 3 contains an MHD stability
analysis of two cases, which are based on equilibria with high
and low triangularity. The TOQ code is used to generate the
equilibria, and the BALOO, DCON and ELITE codes are used
to study the MHD stability at the plasma edge. The pedestal
temperature, plasma density and bootstrap current are varied
in a systematic manner to find a peeling–ballooning threshold.
Fitting expressions for the threshold is implemented in the
model for the H-mode pedestal and ELMs. The details of
implementation and simulation results are reported in section 4.
Discussion of the results and conclusions are presented in
section 5.

2. Combined model for H-mode pedestal and ELM
crashes

The model used in this paper for the H-mode pedestal and
ELMs has been introduced in [8]. The H-mode pedestal
formation is computed by suppression of the anomalous
transport at the plasma edge. In order to take into account the
fact that different instabilities are suppressed by the �Er × �B
flow shear at different rates, separate flow shear suppression
functions F

(j)

l are used. The contributions from the different
instabilities together with the neoclassical thermal diffusivity,
χneo, constitute the total ion and electron thermal diffusivity:

χi = F
(i)
TGMχ

(i)
TGM + F

(i)
RBχ

(i)
RB + χ(i)

neo, (1)

χe = F
(e)
TGMχ

(e)
TGM + F

(e)
RBχ

(e)
RB + χETG + χ(e)

neo, (2)

where

F
(j)

l = 1

1 + α
(j)

l (ωExBτlj )2
,

l = (TGM, RB), j = (ions, electrons), (3)

and where χ
(j)

l is the anomalous thermal diffusivity without
flow shear stabilization and τlj is the turbulence correlation
time. The ITG and TEM thermal diffusivities, χ(j)

TGM, which are
referred to as drift temperature gradient driven modes (TGM)
in this paper, and the resistive ballooning diffusivities, χ

(j)

RB ,
are computed with the MM transport model [16]. The ETG
modes are not suppressed by the �Er × �B flow shear in this
model. The ETG contribution, χETG, is computed with the
Horton model [17]. Neoclassical thermal contributions, χneo,
are not affected by the �Er × �B flow shear and are computed
using the NCLASS module [18].
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The flow shear rate ωE×B is defined as

ωE×B ≡
∣∣∣∣RBθ

Bφ

∂

∂r

(
Er

RBθ

)∣∣∣∣ , (4)

where Bθ and Bφ are poloidal and toroidal components of
the magnetic field, R is the major radius and Er is the radial
component of electric field.

The simulations in this paper were carried out with a
new version of the ASTRA code, version 6.0, compared with
version 5.3 used in [8]. The equilibrium package used in the
new version of the ASTRA code produces a q-profile and a
radial profile of flux surface shapes that are more accurate. As a
consequence, a recalibration of the flow shear coefficients was
required. The flow shear part of the model is used to compute
the H-mode pedestal formation. It remains unchanged relative
to the model introduced in [8] except for an updated version of
the model for neoclassical transport NCLASS and re-calibrated
coefficients for the �Er × �B flow shear suppression, α

(j)

l .
The remainder of the edge model is used to compute the
trigger for ELM crashes and the consequences of each ELM
crash. The changes of the edge temperature profiles resulting
from each ELM crash and the width of the ELM crash
are described in [8]. Plasma density profiles, which are
taken from experimental data for a low triangularity DIII-D
discharge, remain unchanged in these simulations. A full
particle transport model would be important for an accurate
determination of the pedestal formation and growth between
ELM crashes. However, since the focus of this paper is on the
effect of MHD stability, the density profile just prior to an ELM
crash is adequate for the test of the MHD stability condition. It
has been suggested, based on ideal MHD simulations [19], that
the width of the ELM crash can be determined by the width
of the most unstable mode. However, since a full-featured
MHD code is not included in the ASTRA code, an empirical
scaling is used to determine the width of the ELM crash [8]
in this paper. The width of the ELM region is computed from
an empirical expression for the plasma energy removed by an
ELM crash [9, 20].

An ELM crash in this model can be triggered either by
a pressure-driven ballooning instability or by a current-driven
peeling instability [9,10]. The combined effects of ballooning
and peeling criteria are shown on a schematic diagram in
figure 1 [9, 19]. The part of the curve to the left of point A
in figure 1 represents the peeling mode stability criterion;
the part of the curve to the right of point A represents the
ballooning mode stability criterion. A simplified condition
for the peeling and ballooning threshold has been used in the
previous version of the edge model [8]. In particular, the
peeling criterion has been defined by an approximate analytical
expression given in [21]. The peeling mode criterion involves
the Mercier coefficient, which is proportional to the pressure
gradient, and the parallel component of the plasma current
density. It reflects the fact that the peeling mode is destabilized
by the parallel current and is stabilized by the plasma pressure
gradient. This criterion for the peeling instability does not
include a dependence on plasma shaping and does not account
for the stabilizing effects of the vacuum region, except through
an adjustable coefficient. The ballooning instability criterion
used in the previous implementation of the model is valid only
in the first ballooning stability limit. These limitations for the

Figure 1. Schematic diagram of an ELM crash. The stable region ①
separates two unstable regions ② and ③. In the region ②, the ELM
crashes are caused by the ballooning instability; in the region ③, the
ELM crashes are caused by the peeling instability. The
ballooning–peeling threshold is shown as a function of the parallel
component of current density, j‖ and the normalized pressure
gradient, α. In general, the parallel component of the plasma current
density destabilizes the peeling mode and the pressure gradient
stabilizes the peeling mode and destabilizes the ballooning mode.

peeling and ballooning criteria have the effect of narrowing
the ranges of applicability of the model. In general, the
peeling and ballooning threshold depends on many different
parameters, which make them difficult to parametrize. An
MHD stability analysis is carried out for the range of the
normalized pressure gradient and plasma current density that
are predicted in the ASTRA transport simulations, in order to
derive an expression for the peeling–ballooning threshold as a
function of these parameters. This parametric expression can
be used to trigger ELM crashes in transport simulations. This
approach is described in the next section of this paper in detail.

During each ELM crash, the bootstrap current density
changes rapidly in response to the rapid changes in the edge
temperature profiles. However, the local current density
decreases more slowly due to inductive effects, since it
is computed using a magnetic diffusion equation with a
prescribed total plasma current, which automatically adjusts
the loop voltage as needed. The current density in the pedestal
is pushed into the plasma during a short time interval after
each ELM crash. As the pedestal rebuilds during the rest
of the ELM cycle, the increasing pressure gradient drives an
increasingly large bootstrap current density which, in turn,
drives an increasingly large current density in the pedestal.

3. Peeling–ballooning stability analysis

Two reference cases, which are based on two equilibria with
different triangularity, motivated by DIII-D geometry, are
considered in this paper. Plasmas with high triangularity,
δ = 0.6, and low triangularity, δ = 0.2, are considered. Other
plasma parameters are held fixed in the reference cases: the
minor radius a = 0.63 m; major radius R = 1.69 m; toroidal
magnetic field BT = 2.0 T; plasma current I = 1.54 MA;
elongation κ = 1.78; central plasma density ne(0) = 4.7 ×
1019 m−3 and central ion and electron temperatures Te,i =
4 keV. The TOQ equilibrium code [11] is used to generate a
set of equilibria that covers the range of transport simulations
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for the plasma parameters given above. As long as the plasma
geometry, toroidal magnetic field and total plasma current are
fixed in the transport simulations, ELMs are controlled only by
the pressure gradient and bootstrap current. The total current
and the bootstrap current are computed in the TOQ code. The
bootstrap current is obtained using the Sauter formula [22]:

〈j‖B〉 = σneo〈E‖B〉 − I (ψ)pe

×
[
L31

p

pe

∂ ln p

∂ψ
+ L32

∂ ln Te

∂ψ
+ L34λ

∂ ln Ti

∂ψ

]
, (5)

where σneo is the neoclassical resistivity, I (ψ) = RBφ , ψ is
the normalized poloidal flux and L31, L32, L34 and λ are the
bootstrap coefficients, which depend on the electron and ion
collisionalities νe∗ and νi∗ and on the trapped fraction ft .

In order to find the peeling–ballooning stability threshold,
it is necessary to explore a range of parameter space for the
current density while the shape of the current density profile is
determined by the shape of the bootstrap current density. This
exploration of parameter space is accomplished by introducing
the scale factor, Cboot, in the DCON code:

ĵ‖ = Cbootj‖. (6)

The ballooning and peeling mode stability criteria depend
upon the shapes of the pressure and current density profiles
as well as their magnitudes. Consequently, the MHD stability
calculations are carried out with profiles that represent the
profiles obtained as the pedestal evolves in the ASTRA
simulations. The density and temperature profiles are defined
with the following polynomial dependences as in [23]:

ne(ψ) = nsep + an0

[
tanh

(
2

1 − ψmod

�

)

− tanh

(
2
ψ − ψmid

�

)]
+ an1H

(
1 − ψ

ψped

)

×
[

1 −
(

ψ

ψped

)αn1
]αn2

,

Te(ψ) = Tsep + aT 0

[
tanh

(
2

1 − ψmod

�

)

− tanh

(
2
ψ − ψmid

�

)]
+ aT 1H

(
1 − ψ

ψped

)

×
[

1 −
(

ψ

ψped

)αT 1
]αT 2

,

where � is the pedestal width, H is the Heaviside step function,
nsep and Tsep are the electron density and temperature at
separatrix, respectively, ψped = 1 − � and ψmid = 1 − �/2.
The constants an0, an1, aT 0 and aT 1 are computed in TOQ to
satisfy the values of the plasma density and temperature at the
top of the pedestal and plasma centre. The parameters αn1,
αn2, αT 1 and αT 2 control the shape of the electron density and
temperature profiles in the plasma core. The profiles given by
equation (7) resemble the experimentally measured profiles
and were used in the peeling–ballooning ideal MHD stability
analysis by Snyder et al [19,23]. The parameters that specify
the profiles in the plasma core are kept the same for all scans:
αn1 = αn2 = αT 1 = 1.1 and αT 2 = 2. Also, the shape of
the electron density profile is kept unchanged in all scans; the
electron density at the top of the pedestal is set to satisfy the

Figure 2. Temperature profiles that are used in the TOQ code to
generate a set of equilibria for analysis with the ideal MHD stability
codes. The central temperature is fixed and the temperature at the
top of the pedestal is changed.

dependence nped = 0.71〈ne〉, which is a scaling obtained from
a pedestal data base study [24].

In the temperature scan, the central temperature is kept
fixed, while the pedestal temperature is changed (see figure 2).
Both the bootstrap current and pressure gradient are changed in
the temperature scan. In the ASTRA transport simulations, the
change in the bootstrap current results only from the change in
the temperature gradient during an ELM cycle. In the ASTRA
simulations, the density profile remains unchanged during the
ELM cycle and remains unchanged from one simulation to
the next.

The temperature scan also provides control of the
normalized pressure gradient, α, which is defined in this
study as

α = − µ0

2π2

∂p

∂ψ

∂V

∂ψ

(
V

2π2R

)1/2

, (7)

where V is the plasma volume and ψ is the poloidal flux.
In the reference equilibrium case, the central temperature

is set to 4 keV and the central electron density is set to
4.7 × 1019 m−3. About 120 equilibria are generated for the
high triangularity case and about 75 equilibria are generated
for the low triangularity case by changing the TOQ parameters
Tped in the range from 250 to 3250 eV and Cboot in the
range from 0.3 to 2.2. These ranges extend beyond what is
normally observed in order to insure that the model covers
the entire possible parameter range in the simulations. These
equilibria are used in the BALOO, DCON and ELITE codes to
validate the peeling–ballooning stability criteria in the limits
of different toroidal mode numbers. The BALOO code [11] is
an infinite mode number ballooning stability code developed
at General Atomics. The ideal MHD DCON code is suitable
for the stability analysis of low toroidal number ballooning
and peeling modes, and the ELITE code works well for the
analysis of intermediate and high mode numbers. Since these
codes are complementary, they can be used together to compute
the stability criteria. The BALOO and DCON codes are called
routinely from the same script that is used for the equilibrium
generated by the TOQ code. The stability of low toroidal
mode numbers up to n = 7 are analysed with the DCON
code. In addition, the DCON code has an option to check the
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Figure 3. ELM stability diagrams for discharges with (a) high
(δ = 0.6) and (b) low (δ = 0.2) triangularity. The solid curve
separates stable and unstable regions. The ‘+’ symbol on the
diagrams corresponds to the cases that are tested with the MHD
stability codes that appear to be stable; the ‘o’ symbol on the
diagram corresponds to the cases that appear to be unstable. The
normalized pressure gradient, α, and the parallel component of the
current density, j · B/B, are computed at the 97% flux surface.

stability of infinite n modes, which allows the results of DCON
and BALOO to be cross-verified. The ELITE code is called
for several equilibria that are close to the peeling–ballooning
stability threshold.

The results of the stability analysis for high (δ = 0.6) and
low (δ = 0.2) triangularity discharges are shown in figure 3.
The solid curves in figure 3 separate the stable and unstable
regions. The ‘+’ symbols mark stable regions of parameter
space while the ‘o’ symbols mark unstable regions. The high
triangularity discharge has a larger stable region than the low
triangularity discharge, which is consistent with experimental
results and other MHD stability analyses [23]. In particular, the
higher triangularity discharges have a larger second stability
region, which is also consistent with the conclusion that higher

Figure 4. The NBI heating power absorbed by the ions and
electrons as a function of time is shown in the top panel. The central
electron and ion temperatures from ASTRA simulations are plotted
as a function of time at the plasma centre in the bottom panel.

triangularity discharges can more easily access the second
ballooning stability region of parameter space [6].

The peeling–ballooning stability threshold shown in
figure 3 is parametrized using fifth order polynomials:

j stab
‖ =

5∑
i=0

biα
i, (8)

where bi are the parametrization coefficients. Each peeling–
ballooning threshold is parametrized using two polynomials:
one for the higher boundary (peeling threshold) and
the other for the lower boundary (ballooning threshold).
The polynomials for the peeling–ballooning threshold are
implemented in the ASTRA transport code and used as the
criteria to trigger ELM crashes in the transport simulations.

4. Results of integrated transport simulations

A reference scenario for ASTRA simulations is based on a
typical high triangularity DIII-D geometry described in [25].
The parameters for this discharge are listed at the beginning
of the previous section. In addition, the electron, ion and
impurity density profiles, toroidal rotation velocity, Zeff , the
current density driven by the neutral beam injection (NBI)
heating and the auxiliary heating power deposited to electrons
and ions, which are obtained from an analysis simulation of
experimental data, are prescribed and fixed in form. The
experimental radial profile of the total current density is used
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Figure 5. The frequency of ELM crashes as a function of the auxiliary heating power for discharges with low (δ = 0.2) and high (δ = 0.6)
triangularities.

as an initial condition for the magnetic diffusion equation,
which is solved in the ASTRA code. The ASTRA code
does not use the equilibria computed with the TOQ code
described in the previous section of the paper; instead, the
ESC equilibrium module is called to follow the dynamically
evolving equilibrium in the ASTRA code.

In the reference scenario, the NBI auxiliary heating power
deposited to electrons and ions in the simulation is increased
from 1 MW to approximately 6 MW at 0.06 s, as shown in
figure 4. In the ASTRA simulation, the electron and ion
temperatures are observed to increase after the heating power
increases, and the transition from L- to H-mode is observed
at about 0.07 s. An H-mode pedestal is formed at this time
in both electron and ion temperature profiles. For both
the lower and higher triangularity discharges, the auxiliary
heating power after 0.06 s is varied from 3.5 to 7.0 MW in
a series of simulations. The ELM frequencies as a function of
auxiliary heating power for discharges with higher and lower
triangularities are shown in figure 5. It can be seen that the
ELM frequency increases with increasing heating power in
the simulations.

In [8], two possible scenarios were discussed. In the
first scenario, ELM crashes are triggered by the ballooning
instability in the first ballooning stability limit. In the second
scenario, an ELM crash triggered by a ballooning instability
in the first ballooning stability limit is followed by a series
of frequent ELM crashes triggered by a peeling instability.
In the current study, a complete peeling–ballooning threshold
is implemented and an additional scenario is observed in the
simulations. For the higher triangularity discharge and higher
auxiliary heating powers, a single ELM crash triggered by a
ballooning instability in the second ballooning stability limit
can be followed by a series of more frequent ELM crashes
triggered by a ballooning instability in the first ballooning

stability limit (see figures 6 and 7). The range of bootstrap
current where the peeling and ballooning instabilities are stable
is shown on the lower panels in figure 6. The critical values of
bootstrap current are changing with time in accordance with
the stability diagram shown in figure 3. Points A, B and C on
the lower panels in figure 6 correspond to the first ELM cycle
in the two ASTRA simulations with lower (Paux = 6 MW) and
higher heating powers (Paux = 8 MW). The difference between
the two cases is also demonstrated in figure 7 that shows
an ELM cycle on the peeling–ballooning stability diagram.
In both the cases of lower and higher heating powers, the
first ELM crash (point A on figures 6 and 7) is caused by
the ballooning instability in the second stability limit. The
pedestal pressure and bootstrap current drop from point A
to point B and then recover to point C (next ELM crash)
in figure 7. In the case of lower heating power, the next
ELM crash is also caused by the ballooning instability in the
second stability limit; in the case of higher heating power, the
next ELM crash is caused by the ballooning instability in
the first stability limit. The difference in the two scenarios can
be explained by the different rates of rebuilding of pedestal
pressure and bootstrap current in the pedestal region. In
general, access to the second stability region results in edge
pressure gradients that reach higher levels. Because of this,
the ELM crashes triggered by a ballooning instability in the
first stability limit are more frequent than the ELM crashes
triggered by a ballooning instability in the second stability
limit. The change of ELM frequency level as a result of the
transition from the second to the first ballooning stability for
the high triangularity simulations is shown in figure 5. There
is no transition from the second to the first stability as heating
power is increased in the lower triangularity simulations. In
the high triangularity ASTRA simulations, the discharges with
low auxiliary heating (below 7 MW) have ELM crashes that
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Figure 6. Time evolution of electron and ion temperatures,
normalized pressure gradient and bootstrap current at 95% of
the minor radius in the high triangularity discharge (δ = 0.6)
for the cases of (a) lower (6 MW) and (b) higher (8 MW) total
auxiliary heating power. The range of bootstrap current that is
stable for the peeling and ballooning instabilities is shown on
the lower panels.

are triggered by a ballooning instability in the second stability
limit, while the discharges with high heating power (above
7 MW) are triggered by a ballooning instability in the first
stability limit. In general, the pedestal pressure increases with
heating power for type-1 ELMs. Experimental results [26–28]
suggest that H-mode pedestal depends on the auxiliary heating

Figure 7. Peeling–ballooning stability diagrams with ELM cycles
in the high triangularity discharge (δ = 0.6) for the cases of
(a) lower (6 MW) and (b) higher (8 MW) total auxiliary heating
power. Points A and C represent two consecutive ELM crashes and
correspond to point A and C on the lower panels in figure 6. Note
that the normalized pressure gradient and bootstrap current on these
diagrams are computed at the position of the maximum pressure
gradient in the pedestal region, while the normalized pressure
gradient and bootstrap current in figure 6 are computed at 95% of
the minor radius.

power as
Tped ∝ P α

aux,

where α ranges from 0.19 to 0.5. The experimental evidence
is that α may vary over a wide range and depend sensitively
on stability conditions and specific plasma parameters. The
dependence of pedestal pressure on heating power may also
reflect the type of ELM crash that is occurring. It is possible
that the pedestal behaviour shown in figures 6 and 7 is the result
of ELMs that are not type I ELMs.

5. Summary

An improved model is introduced for the H-mode pedestal
and ELMs [8]. A parametrized peeling–ballooning stability
criterion is implemented in the model, based on a detailed
MHD stability analysis with the BALOO, DCON and ELITE
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Figure 8. Results of the resistive MHD NIMROD code simulations
for the first 10 toroidal mode numbers: (a) logarithm of the kinetic
energy for different mode numbers; (b) contour plot of the
eigen-functions.

codes. Two different scenarios for ELM crashes are shown.
For the scenario with lower auxiliary heating power, ELMs
are mostly caused by the ballooning instability in the second
stability limit. For the scenario with higher auxiliary heating
power (above 7 MW), ELMs might be caused by the ballooning
instability in the first stability limit. Such ELM crashes are
much less violent, because the pedestal pressure gradient does
not build up as high before passing the stability condition
and consequently they occur more frequently. In general, the
frequency of ELMs increases with increasing auxiliary heating
power (as shown in figure 5). The frequency of ELMs also
depends on the plasma shaping. In particular, the dependence
of ELM frequency on the triangularity is studied in this paper.
It is found that higher triangularity discharges have a larger
stability region than lower triangularity discharges (compare
figures 3(a) and (b)). This observation is consistent with
other MHD stability analyses [23] and with the conclusion
that higher triangularity discharges can more easily access the
second ballooning stability limit region of parameter space [6].
As a result, ELMs in lower triangularity discharges are much

more frequent than ELMs in higher triangularity discharges
(as shown in figure 5).

In conclusion, it is clear that additional MHD stability
studies are required. In this paper, ideal MHD stability codes
are used, while resistivity and two-fluid effects are expected
to be important. A preliminary study with the resistive MHD
NIMROD [29] code is under way. Some of the results of these
simulations are shown in figure 8. The equilibrium selected
for the NIMROD simulation corresponds to a stable case that
is close to the nose of the stability diagram in figure 3(a). It
is shown in figure 8(a) that modes with low toroidal mode
numbers (n � 10) are linearly unstable. The NIMROD code
uses exactly the same equilibrium generated with the TOQ
code. At the same time, the equilibrium is not extended into the
vacuum region in the NIMROD code. (In the DCON code, the
extension of the equilibrium into the vacuum region is carried
out using the supplementary code VACUUM [30].) In order
to be consistent, an equilibrium with settings that eliminate
the vacuum region has been analysed with the DCON code.
The DCON results show that the peeling mode is unstable
for the low toroidal mode numbers shown in this case, which
might be the case that is observed with the NIMROD code.
The eigen-functions shown in figure 3(b) are very localized
close to the separatrix, which might indicate the signature of a
peeling instability. In order to verify the results obtained with
the MHD ideal stability code, a robust vacuum code should be
used together with the NIMROD code which will be done in
future studies.
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