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Recent advances in the integrated modeling of ELMy H-mode plasmas are presented.
A new model for the H-mode pedestal and for the triggering of ELMs predicts the height,
width, and shape of the H-mode pedestal and the frequency and width of ELMs. The model
for the pedestal and ELMs is used in the ASTRA integrated transport code to follow the
time evolution of tokamak discharges from L-mode through the transition from L-mode to
H-mode, with the formation of the H-mode pedestal, and, subsequently, to the triggering
of ELMs. Turbulence driven by the ion temperature gradient mode, resistive ballooning
mode, trapped electron mode, and electron temperature gradient mode contributes to
the anomalous thermal transport at the plasma edge in this model. Formation of the
pedestal and the L-H transition is the direct result of �Er × �B flow shear suppression
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of anomalous transport. The periodic ELM crashes are triggered by MHD instabilities.
Two mechanisms for triggering ELMs are considered: ELMs are triggered by ballooning
modes if the pressure gradient exceeds the ballooning threshold or by peeling modes if
the edge current density exceeds the peeling mode threshold. The BALOO, DCON, and
ELITE ideal MHD stability codes are used to derive a new parametric expression for the
peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is
implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like
discharges are presented and compared with experimental observations. The results from
the ideal MHD stability codes are compared with results from the resistive MHD stability
code NIMROD.

PACS : ???

Key words: ???

I Introduction

Integrated modeling of the core of tokamak plasmas has been developed for
decades. An impressive agreement with experimental observations has been achieved
with different transport models such as the Multi-Mode (MM), GLF23, and mixed
Bohm/gyro-Bohm (or JET) transport models. Transport modeling of the edge of
tokamak plasmas is another challenging problem. A wide range of time and length
scales need to be considered and many different elements of physics are involved
at the plasma edge. The physics topics that are critically important for the plasma
edge are the transition from low- to high- confinement regime (L-H transition), H-
mode pedestal build up, anomalous and neoclassical transport at the plasma edge,
role of the �Er × �B flow shear, triggering and dynamics of the edge localized modes
(ELMs). None of these problems is completely understood. Numerous theories, hy-
pothesis, and ideas are being considered for each of these problems. One of the
effective ways to test ideas for physics models is to combine them within an inte-
grative modeling code and compare the simulation results with the experiments.
Integrated modeling studies that self-consistently take into account the effects of
the plasma edge have been developing during the last decade [1–5]. Some of these
simulations are rather comprehensive and take into account MHD equilibrium, tur-
bulent anomalous radial transport, neutral gas transport, atomic and molecular
physics, and plasma-wall interactions.
A model for the H-mode pedestal has been recently developed by Zolotukhin

et al. [6] and Pacher et al. [1]. The model takes into account the stabilizing effects
of the �Er × �B flow shear and large magnetic shear at the plasma edge. While the
stabilizing effect of the �Er × �B flow shear is well recognized [7–10], the stabilizing
effect of the large magnetic shear is not so well known. The stabilizing effect of large
magnetic shear is at the opposite extreme of the stabilizing effect resulting from
small magnetic shear in the neighborhood of internal transport barriers (ITBs).
Nevertheless, the ITB turbulence suppression for large magnetic shear has been
demonstrated in rtheory [11], in gyro-kinetic turbulence simulations [12], and in
some transport simulations [13]. In addition, the stabilizing effect of large magnetic
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shear can be included to reproduce the effect of ELMs on the H-mode pedestal [14].
After taking into account of the effects of �Er × �B flow shear and large magnetic
shear, the resulting effective thermal diffusivity has the form:

χeff = χanomFs + χneocl, (1)

where χanom is the anomalous thermal diffusivity from the transport model, χneocl
is the neoclassical thermal diffusivity,

Fs =
G(s)

1 +
(
ωE×B

γ̂ITG

)2 , (2)

G(s) is the magnetic shear stabilization function, ωE×B is the �Er × �B flow shearing
rate, and γ̂ITG is the volume average of ITG growth rate, without stabilization,
inside 0.9 of the minor radius. The magnetic shear stabilization function used by
Zolotukhin et al. [6] has the form G(s) = s−1.8. An additional threshold depen-
dence has been introduced by Pacher et al. [1] into the magnetic shear stabilization
function G(s) = min(1, (s− sth)−2).

A new model for the H-mode pedestal and ELMs has been recently developed
by Pankin et al [5]. The model predicts the height, width, and shape of the H-
mode pedestal as well as the frequency and width of ELMs. The model for the
H-mode pedestal in tokamak plasmas is based on flow shear reduction of anomalous
transport. The formation of the pedestal and the L-H transition in this model are
the direct result of �Er × �B flow shear suppression of transport. The magnetic shear
factor G(s) is not part of the model since the magnetic shear stabilization effect is
already included in the transport model, as it is in the Weiland model used in that
study [15].

Edge localized modes (ELMs) are among the determinant factors at the plasma
edge that affect the whole plasma profiles, since up to 10% of the plasma energy
can be removed by a single ELM crash. An ELM crash can be initiated either by a
pressure driven ballooning instability or by a current driven peeling instability [16,
17]. Two mechanisms for triggering ELMs have been considered in the model for
ELMs [5]. ELMs are triggered by ballooning modes if the pressure gradient exceeds
the ballooning limit or by peeling modes if the edge current density exceeds the
peeling mode criterion. The model for the pedestal and ELMs has been used in
a predictive integrated modeling code to follow the time evolution of tokamak
discharges from L-mode through the transition from L-mode to H-mode, with the
formation of the H-mode pedestal, and, subsequently, the triggering of ELMs.

The model for the H-mode pedestal and ELMs [5] is advanced in this paper. The
ELM triggering conditions are studied with the MHD stability codes BALOO [18],
DCON [19], and ELITE [20]. These MHD instability codes are used to compute
the combined peeling-ballooning threshold, which are then used to derive fitting
expressions that are included in the model. Using these MHD instability enhances
the model and extends the level of its applicability. In particular, the ballooning
criterion implemented previously is valid only in the first ballooning stability limit,
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while many recent DIII-D discharges operate in the second stability domain. The
improved stability criterion model is tested in the integrated modeling code AS-
TRA [21]. Cases with low and high triangularity are considered.
This paper is organized in the following manner. In Section II, a model for the

H-mode pedestal and ELMs is introduced. The model is based on �Er× �B flow shear
suppression of anomalous thermal transport. Two ELM triggering mechanisms are
considered: ELM crashes are caused either by ballooning mode instabilities or by
peeling mode instabilities. Section III contains an MHD stability analysis of two
cases, which are based on DIII-D equilibria with high and low triangularity. The
TOQ code is used to generate the equilibria, and the BALOO, DCON, and ELITE
codes are used to study the MHD stability at the plasma edge. The pedestal tem-
perature, plasma density, and bootstrap current are varied in a systematic man-
ner to find a peeling-ballooning threshold. Fitting expressions for the threshold is
implemented in the model for the H-mode pedestal and ELMs. The details of im-
plementation and simulation results are reported in Section IV. Discussion of the
results and conclusions are presented in the Section V.

II Combined model for H-mode pedestal and ELM crashes

The model used in this paper for the H-mode pedestal and ELMs has been
introduced in Ref. [5]. The H-mode pedestal formation is computed by suppression
of the anomalous transport at the plasma edge. In order to take into account the
fact that different instabilities are suppressed by the �Er × �B flow shear at different
rates, separate flow shear suppression functions F (j)

l are used. The contributions
from the different instabilities together with the neoclassical thermal diffusivity,
χneo, constitute the total ion and electron thermal diffusivity:

χi = F
(i)
TGMχ

(i)
TGM + F

(i)
RBχ

(i)
RB + χ(i)neo (3)

χe = F
(e)
TGMχ

(e)
TGM + F

(e)
RBχ

(e)
RB + χETG + χ(e)neo, (4)

where

F
(j)
l =

1

1 + α
(j)
l (ωE×Bτlj)

2
, l = (TGM,RB), j = (ions, electrons), (5)

and χ(j)l is the anomalous thermal diffusivity without flow shear stabilization; τlj
is the turbulence correlation time, which is estimated as τlj = L2

l /χ
(j)
l , where

Ll is described below. The ITG and TEM thermal diffusivities, χ
(j)
TGM, which are

referred to as drift Temperature Gradient driven Modes (TGM) in this paper, are
computed with the Weiland model [22], and the resistive ballooning diffusivities,
χ
(j)
RB, are computed with the Guzdar–Drake model [23]. The Weiland and Guzdar–
Drake models are parts of the Multi-Mode (MM) transport model [15]. The ETG
modes are not suppressed by the �Er × �B flow shear. The ETG contribution, χETG,
is computed with the Horton model [24]. Neoclassical thermal contributions, χneo,
are not affected by the �Er × �B flow shear and are computed using the NCLASS
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module [25]. For the TGM modes, LTGM is set equal to the gyro-radius ρs, and for
the resistive ballooning modes, LRB is defined as [26]

LRB = 2πq(a)R
(
2ne2η‖ρs

meΩe
√
2RLn

)1/2

, (6)

where q(a) is the safety factor at the plasma edge, η‖ is the classical resistivity,
Ωe is the electron gyro-frequency, and Ln = −dr/d lnn is the scale length of the
density gradient. The effect of the �Er × �B flow shear is demonstrated in Fig. II.

Fig. 1. Radial profiles of ITG
(solid curve) and resistive balloon-
ing (dashed curve) ion thermal dif-
fusivities without flow shear sup-
pression (top panel); shear suppres-
sion functions for ITG (solid curve)
and resistive ballooning (dashed
curve) thermal transport (middle
panel); and resulting thermal dif-
fusivities after including the �Er ×
�B flow shear suppression (bottom

panel).

The flow shear rate ωE×B is defined as

ωE×B ≡
∣∣∣∣RBθ

Bφ

∂

∂r

(
Er

RBθ

)∣∣∣∣ , (7)

where Bθ and Bφ are poloidal and toroidal components of the magnetic field; R is
the major radius; and Er is the radial component of electric field, which is computed
from the first order radial force balance equation:

Er =
1

Zieni

∂pi
∂r

− vθBφ + vφBθ, (8)

where vθ and vφ are the poloidal and toroidal velocities respectively. The neoclassi-
cal expression for the poloidal rotation velocity in collisionless regime is used [27]:

vθ =
0.8839fc

eZi(0.3477 + 0.4058fc)
Bφ

B2

∂Ti
∂r

, (9)
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where fc = 1 − 1.46ε1/2 + 0.46ε3/2 is the average fraction of circulating particles
and ε = r/R is the aspect ratio. The toroidal rotation velocity, vφ is taken from
the experimental data.
This part of the model is used to computed the H-mode pedestal formation.

It remains unchanged relative to the model introduced in Ref. [5] except for an
updated version of the model for neoclassical transport NCLASS and re-calibrated
coefficients for the �Er × �B flow shear suppression, α(j)l . The remainder of the edge
model is used to compute the trigger for ELM crashes and the consequences of each
ELM crash.

Fig. 2. Schematic diagram of an ELM
crash. The stable region separates two
unstable regions and . In the region , the
ELM crashes are caused by the ballooning
instability; in the region , the ELM crashes
are caused by the peeling instability. The
ballooning-peeling threshold is shown as
a function of the parallel component of
current density, j||, and the normalized
pressure gradient, α. In general, the parallel

component of plasma density destabilizes both the ballooning and peeling modes, and the
pressure gradient stabilizes the peeling mode and destabilizes the ballooning mode.

An ELM crash in this model can be triggered either by a pressure driven bal-
looning instability or by a current driven peeling instability [16, 17]. The combined
effects of ballooning and peeling criteria are shown on a schematic diagram in
Fig. II [16, 28]. The part of the curve to the left of point A in Fig. II represents
the peeling mode stability criterion; the part of the curve to the right of point A
represents the ballooning mode stability criterion. A simplified condition for the
peeling and ballooning threshold has been used in the previous version of the edge
model [5]. In particular, the peeling criterion has been defined by an approximate
analytical expression given in Ref. [29]. The peeling mode criterion involves the
Mercier coefficient, which is proportional to the pressure gradient, and the parallel
component of the plasma density. It reflects the fact that the peeling mode is desta-
bilized by the parallel current and is stabilized by the plasma pressure gradient.
This criterion for the peeling instability does not include a dependence on plasma
shaping and does not account for the stabilizing effects of the vacuum region, ex-
cept through an adjustable coefficient. The ballooning instability criterion used in
the previous implementation of the model is valid only in the first ballooning sta-
bility limit. These limitations for the peeling and ballooning criteria have the effect
of narrowing the ranges of applicability of the model. In general, the peeling and
ballooning threshold depends on many different parameters, which make them dif-
ficult to parameterize. It is worthwhile to carry out an MHD stability analysis for
a range of plasma parameters which are anticipated in the transport simulations,
in order to derive an expression for the peeling-ballooning threshold as function of
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these parameters. This parametric expression can be used in transport simulations.
This approach is described in the next section of this paper in details.

III Peeling-ballooning stability analysis

Two reference case, which are based on two DIII-D discharges with different
triangularity are considered further in this paper. Plasmas with high triangularity,
δ = 0.6, and low triangularity, δ = 0.2, are considered. Other plasma parameters
are held fixed in the reference cases: the minor radius a = 0.63m; major radius
R = 1.69m; toroidal magnetic field BT = 2.0T; plasma current I = 1.54MA;
elongation κ = 1.78; central plasma density ne(0) = 4.7 × 1019m−3; and central
ion end electron temperatures Te,i = 4kEV. The TOQ equilibrium code [18] is
used to generate a set of equilibria that covers the range of transport simulations
for the plasma parameters given above. As long as the plasma geometry, toroidal
magnetic field, and total plasma current are fixed in the transport simulations,
ELMs are controlled by only the pressure gradient and bootstrap current. The
bootstrap current is computed in the TOQ code with the Sauter formula [30]

〈
j‖B

〉
= σneo

〈
E‖B

〉
− I(ψ)pe

[
L31

p

pe

∂ ln p
∂ψ

+ L32
∂ lnTe
∂ψ

+ L34λ
∂ lnTi
∂ψ

]
, (10)

where σneo is the neoclassical resistivity, I(ψ) = RBφ, ψ is the normalized poloidal
flux, and L31, L32, L34 and λ are the bootstrap coefficients, which depend on the
electron and ion collisionalities νe∗ and νi∗, and on the trapped fraction ft. The
bootstrap current responds to changes in the plasma density and temperature in
almost the same way as the normalized pressure gradient does. In order to find a
peeling-ballooning stability threshold, it is convenient to use an additional control
parameter, Cboot, for the bootstrap current in the DCON code:

ĵ‖ = Cbootj‖. (11)

The density and temperature profiles are defined with the following polynomial
dependencies:

ne(ψ) = nsep + an0

[
0.762− tanh

(
2
ψ − ψmid

∆

)]

+ an1H

(
1− ψ

ψped

)[
1−

(
ψ

ψped

)αn1]αn2

,

Te(ψ) = Tsep + aT0

[
0.762− tanh

(
2
ψ − ψmid

∆

)]

+ aT1H

(
1− ψ

ψped

)[
1−

(
ψ

ψped

)αT1]αT2

,

(12)

where ∆ is the pedestal width, H is the Heaviside step function, nsep and Tsep are
the electron density and temperature at separatrix respectively, ψped = 1−∆, and
ψmid = 1 − ∆/2. The constants an0, an1, aT0 and aT1 are computed in TOQ to
satisfy the values of the plasma density and temperature at the top of the pedestal
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and plasma center. The parameters αn1, αn2, αT1, and αT2 control the shape of
the electron density and temperature profiles in the plasma core. The profiles given
by Eq. (12) reproduce the experimentally measured profiles [31] and were used in
the peeling-ballooning ideal MHD stability analysis by Snyder et al. [28, 32]. The
parameters that specify the profiles in the plasma core are kept the same for all
scans: αn1 = αn2 = αT1 = 1.1 and αT2 = 2. Also, the shape of the electron
density profile is kept unchanged in all scans; the electron density at the top of
the pedestal is set to satisfy the dependence nped = 0.71 〈ne〉, which is observed in
experiments [33]. In the density scan, the entire density profile is scaled as

n̂e(ψ) = Cdensne(ψ), (13)

where Cdens is the control parameter in the TOQ code. In the temperature scan,
the central temperature is kept fixed, while the pedestal temperature is changed
(see Fig. 3). Both the bootstrap current and pressure gradient are changed in the
density and temperature scans. The density scan provides more control of the boot-
strap current, while the temperature scan provides more control of the normalized
pressure gradient, α, which is defined in this study as

α = − µ0
2π2

∂p

∂ψ

∂V

∂ψ

(
V

2π2R

)1/2

, (14)

where V is the plasma volume and ψ is the poloidal flux.

0.2 0.4 0.6 0.8 1
ψ

0.2

0.4

0.6

0.8

1

T/To

Fig. 3. Temperature profiles that
are used in the TOQ code to gen-
erate a set of equilibria for anal-
ysis with the ideal MHD stability
codes. The central temperature is
fixed and the temperature at the

top of the pedestal is changed.

In the reference equilibrium case, the central temperature is set to 4 keV and the
central electron density is set to 4.7×1019m−3. About 120 equilibria are generated
for the high triangularity case and about 75 equilibria are generated for the low
triangularity case by changing the TOQ parameters Tped in the range from 250keV
to 3250keV, Cboot in the range from 0.3 to 2.2, and Cden in the range from 0.5
to 3. These equilibria are used in the BALOO, DCON, and ELITE codes to vali-
date the peeling-ballooning stability criteria in the limits of different toroidal mode
numbers. The BALOO code [18] is an infinite mode number ballooning stability
code developed at General Atomics. The ideal MHD DCON code is suitable for
the stability analysis of low toroidal number ballooning and peeling modes, and the
ELITE code works well for the analysis of intermediate and high mode numbers.
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Since these codes are complementary, they can be used together to compute the
stability criteria. The BALOO and DCON codes are called routinely from the same
script that is used for the equilibrium generated by the TOQ code. The stability
of low toroidal mode numbers up to n = 7 are analyzed with the DCON code. In
addition, the DCON code has a criteria to check the stability of infinite n modes.
That allows the results of DCON and BALOO to be cross-verified. The ELITE code
is called for several questionable equilibria that are close to the peeling-ballooning
stability threshold.

a) b)

Fig. 4. ELM stability diagrams for discharges with (a) high (δ = 0.6) and (b) low (δ = 0.2)
triangularity. Solid curve separates stable and unstable regions. The ‘+’ symbol on the
diagrams corresponds to the cases that are tested with the MHD stability codes appear
to be stable; the ’o’ symbol on the diagram correspond to the cases that appear to be

unstable.

The results of the stability analysis for high (δ = 0.6) and low (δ = 0.2) triangu-
larity discharges are shown in Fig. 4. The solid curves in Fig. 4 separate the stable
and unstable regions. The ‘+’ symbols mark stable regions of parameter space while
the ‘o’ symbols mark unstable regions. The high triangularity discharge has a larger
stable region than the low triangularity discharge, which is consistent with experi-
mental results and other MHD stability analysis [32]. In particular, the higher tri-
angularity discharges have a larger second stability region, which is also consistent
with the conclusion that higher triangularity discharges can more easily access the
second ballooning stability region of parameter space [3]. The peeling-ballooning
threshold shown in Fig. 4 is parameterized using fifth order polynomials:

jstab‖ =
6∑

i=0

biα
i, (15)

where bi are the parameterization coefficients. Each peeling-ballooning threshold is
parameterized using two polynomials: one for the higher boundary (peeling thresh-
old) and the other for the lower boundary (ballooning threshold). The polynomials
for the peeling-ballooning threshold are implemented in the ASTRA transport code
and used as the criteria to trigger ELM crashes in the transport simulations.
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IV Results of integrated transport simulations

A reference scenario for ASTRA simulations is based on typical DIII-D geom-
etry, using the parameters given at the beginning of previous section. In addition,
the electron, ion, and impurity density profiles, toroidal rotation velocity, Zeff , the
current density driven by the neutral beam injection (NBI) heating, and the aux-
iliary heating power deposited to electrons and ions, which are obtained from an
analysis simulation of experimental data, are prescribed and fixed in form. The
experimental radial profile of the total current density is used as an initial condi-
tion for the magnetic diffusion equation, which is solved in the ASTRA code. The
ASTRA code does not use the equilibria computed with the TOQ code described
in the previous section of the paper; instead, the ESC equilibrium module is called
to follow the dynamically evolving equilibrium in the ASTRA code.
In the reference scenario, the NBI auxiliary heating power deposited to elec-

trons and ions in the simulation is increased from 1MW to approximately 6MW at
0.06 s, as shown in Fig. 5. In the ASTRA simulation, the electron and ion tempera-
tures are observed to increase after the heating power increases, and the transition
from L- to H-mode is observed at about 0.07 s. An H-mode pedestal is formed at
this time in both electron and ion temperature profiles. For both the lower and

δ

δ

Fig. 5. The NBI heating power absorbed
by the ions and electrons as a function of
time is shown in the top panel. The electron
and and ion temperatures from Astra sim-
ulations are plotted as a function of time at

the plasma center in the bottom panel.

Fig. 6. The frequency of ELM crashes as
function of the auxiliary heating power for
discharges with low (δ = 0.2) and high (δ =

0.6) triangularities.

10 5891 C Czech. J. Phys. 55 (2005)
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α α

a) b)

Fig. 7. Time evolution of electron and ion temperatures, normalized pressure gradient,
and bootstrap current at 95% of the minor radius for the cases of a) lower (6 MW) and

b) higher (8 MW) total auxiliary heating power.

higher triangularity discharges, the auxiliary heating power is varied from 3.5MW
to 7.0MW in a series of simulations. The ELM frequencies as a function of auxil-
iary heating power for discharges with higher and lower triangularities are shown
in Fig. 6. It can be seen that the ELM frequency increases with the heating power
in the simulations, which is consistent with experimental observations in H-mode
plasmas with type I ELMs.
In Ref. [5], two possible scenarios were discussed. In the first scenario, ELM

crashes that are triggered by the ballooning instability in the first ballooning sta-
bility limit. In the second scenario, an ELM crash triggered by a ballooning in-
stability in the first ballooning stability limit is followed by a serious of frequent
ELM crashes caused by the peeling instability. In the current study, a complete
peeling-ballooning threshold is implemented and additional scenario is observed.
For the higher triangularity discharge and higher auxiliary heating powers, a sin-
gle ELM crash triggered by a ballooning instability in the first ballooning stability
limit can be followed by series of more frequent ELM crashes triggered by a bal-
looning instability in the first ballooning stability limit (compare Figs. 7a and b).
In general, access to the second stability region results in edge pressure gradients
that reach higher levels. Because of this, the ELM crashes triggered by a ballooning
instability in the first stability limit are less frequent than the ELM crashes trig-
gered by a ballooning instability in the second stability limit. The change of the
slope of the ELM frequency as a function of heating power, shown in Fig. 6, can

Czech. J. Phys. 55 (2005) 5891 C 11
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be explained by the different scenarios that are followed for low and high auxiliary
heating discharges. In the ASTRA simulations, the discharges with low auxiliary
heating (below 7MW) have ELM crashes that are triggered by a ballooning insta-
bility in the second stability limit, while the discharges with high heating power
(above 7MW) are triggered by a ballooning instability in the first stability limit.

V Summary

An improved model is introduced for H-mode pedestal and ELMs [5]. A parame-
terized peeling-ballooning stability criterion is implemented in the model, based on
detailed MHD analyses with the BALOO, DCON, and ELITE codes. Two different
scenarios for ELM crashes in DIII-D discharges are shown. For the scenario with
lower auxiliary heating power, ELMs are mostly caused by the ballooning instability
in the second stability limit. For the scenario with higher auxiliary heating power
(above 7MW), ELMs might be caused by the ballooning instability in the first sta-
bility limit. Such ELM crashes are much less violent and more frequent. In general,
the frequency of ELMs increases with the auxiliary heating power (as shown in
Fig. 6), which is consistent with the experimental observations. The frequency of
ELMs also depends on the plasma shaping. In particular, the dependence on the
triangularity is studied in this paper. It is found that higher triangularity discharges
have a larger stability region than lower triangularity discharges (compare Figs. 4a
and b). This observation is consistent with other MHD stability analysis [32] and
the conclusion that higher triangularity discharges can more easily access the second
ballooning stability limit region of parameter space [3]. As result, ELMs in lower
triangularity discharges are much more frequent than ELMs in higher triangularity
discharges (as shown in Fig. 6).

a) b)

Fig. 8. Results of the resistive MHD NIMROD code simulations for the first 10 toroidal
mode numbers: a) logarithm of the kinetic energy for different mode numbers; b) contour

plot of the eigen-functions.
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In conclusion, it is clear that additional MHD stability studies are required.
In this paper, ideal MHD stability codes are used, while resistivity and two-fluid
effects are expected to be important. A preliminary study with the resistive MHD
NIMROD [34] code is under way. Some of the results of these simulations are shown
in Fig. 8. The equilibrium selected for the NIMROD simulation corresponds to a
stable case that is close to the nose of the stability diagram on Fig. 4a. It is shown in
Fig. 8a that modes with low toroidal mode numbers (n ≤ 10) are linearly unstable.
The NIMROD code uses exactly the same equilibrium generated with the TOQ
code. At the same time, the equilibrium is not extended into the vacuum region in
the NIMROD code. (In the DCON code, the extension of the equilibrium into the
vacuum region is carried out using the supplementary code VACUUM [35]). In order
to be consistent, an equilibrium with the settings that eliminate the vacuum region
has been analyzed with the DCON code. The DCON results show that peeling
mode is unstable for the low toroidal mode numbers shown in this case, which
might be the case that is observed with the NIMROD code. The eigen-functions
shown in Fig. 4b are very localized close to separatrix, which might indicate the
signature of a peeling instability. In order to verify the results obtained with the
MHD ideal stability code, a robust vacuum code should be used together with the
NIMROD code which will be done in future studies.

The authors thank Dr. G. Pereverzev for installation and support of the ASTRA code,
Dr. L. E. Zakharov for installation and help with the ESC equilibrium module.
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