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Abstract
A model is developed for use in integrated modelling codes to predict the

AQ1

height, width and shape of the H-mode pedestal as well as the frequency and
width of edge localized modes (ELMs). The model for the H-mode pedestal in
tokamak plasmas is based on flow shear reduction of anomalous transport, while
the periodic ELM crashes are triggered by MHD instabilities. The formation
of the pedestal and the L–H transition in this model are the direct result of
�Er × �B flow shear suppression of transport. Suppression of the anomalous
transport enhances the role of neoclassical transport in the pedestal region.
The ratio of suppression of anomalous thermal transport in electron and ion
channels controls the ratio of electron to ion temperature at the top of the
pedestal. Two mechanisms for triggering ELMs are considered. ELMs are
triggered by ballooning modes if the pressure gradient exceeds the ballooning
limit or by peeling modes if the edge current density exceeds the peeling mode
criterion. The models for the pedestal and ELMs are used in a predictive
integrated modelling code to follow the time evolution of tokamak discharges
from L-mode through the transition from L-mode to H-mode, with the formation
of the H-mode pedestal, and, subsequently, the triggering of ELMs. The
objective is to produce self-consistent predictions of the width, height and
shape of the H-mode pedestal and the frequency of ELMs. The dependencies
of pedestal temperature, pedestal width and ELM frequency as a function of
plasma heating power, magnetic field and density are discussed.
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1. Introduction

An objective of integrated modelling of tokamak plasmas is to predict plasma profiles and
discharge performance within a code that self-consistently computes sources and sinks, large-
scale instabilities, as well as neoclassical and anomalous transport coefficients in the plasma
core and at the plasma edge. The formation of the high confinement mode (H-mode) pedestal
has a significant effect on the entire plasma profile.

There are a number of instabilities that are believed to be responsible for anomalous thermal
transport [1], such as the ion and electron temperature gradient (ITG and ETG) modes, trapped
electron modes (TEMs) and resistive ballooning modes. These modes provide contributions
to transport that are different in the plasma core and at the plasma edge. For example, ITG
and TEM modes are major contributors to transport in the plasma core, while the resistive
ballooning modes contribute at the plasma edge. The different instabilities are suppressed by
the flow shear at different rates. In the pedestal, anomalous transport is strongly suppressed
and the role of neoclassical transport becomes important [2, 3].

The stabilizing effect of the �Er × �B shear on the drift turbulence is well recognized and
established [4–8]. There are two widely accepted models for the suppression of drift turbulence
in the plasma core, the Hahm–Burrell model and the Hamaguchi–Horton model. These models
have been used to predict the formation of internal transport barriers (ITBs) [9]. The Hahm–
Burrell model states that the drift turbulence is completely suppressed if the Hahm–Burrell
shearing rate ωE×B ,

ωE×B ≡
∣∣∣∣RBθ

Bφ

∂

∂r

(
Er

RBθ

)∣∣∣∣ (1)

is greater than the maximum growth rate of the drift modes [6]. In equation (1), Bθ and Bφ

are poloidal and toroidal components of the magnetic field, R is the major radius and Er is the
radial component of electric field. The Hamaguchi–Horton model states that the drift mode
transport coefficients are reduced by the factor

Fs = 1

1 + (W/Wcrit)2
, (2)

where Wcrit is the critical value that is close to unity and W is the Hamaguchi–Horton shear
parameter [5]. The Hamaguchi–Horton shear parameter takes into account the effect of
magnetic shear in addition to the �Er × �B flow shear,

W ≈ R

√
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Te
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) (
∂ ln q

∂ψ

)−1
∣∣∣∣∣ , (3)

where mi is the ion mass, Te is the electron temperature, q is the local safety factor and ψ is
the magnetic stream function.

The effect of �Er × �B flow shear on the edge turbulence has been studied by Shaing et al [10]
and Zhang and Mahajan [11]. They found that the flow shear reduces the fluctuation level by a
term proportional to |dvθ/dr|2 (where vθ is the �Er × �B poloidal velocity) in the small flow shear
regime. In a more general treatment of weak turbulence theory, the turbulence level is reduced
by the factor 1 + 2α−2(|dvθ/dr|τe)

2. Here τe is the decorrelation time without flow shear and
α is a measure of anisotropy of the k spectrum. Recent studies by Figarella et al [12] have
shown that the anomalous transport caused by the resistive pressure-gradient driven turbulence
is suppressed by rotation shear by the following rate:

Fs = 1

1 + (τcω̂E×B)γ
, (4)
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where τc is the correlation time of fluctuations for the case without flow, ω̂E×B is the normalized
�Er × �B flow shear rate and γ is a constant, which is close to 2. A similar model for the ITG
turbulence suppression has been developed by Zolotukhin et al [13], Janeschitz et al [14] and
Pacher et al [15]. In the latter studies [14, 15], a magnetic shear dependence was introduced
into the flow shear suppression function based on experimental observations of pedestal
characteristics in several tokamaks and which included a dependence on triangularity [16].
This shear suppression function has the form

Fs = G(s)

1 + (ωE×B/γ̂ITG)2
, (5)

where G(s) is the magnetic shear stabilization function, γ̂ITG is the volume average of ITG
growth rate, without stabilization, inside 0.9 of the minor radius. The stabilizing magnetic field
shear effect is related to the dependence of the ITG thermal diffusivity on the magnetic field [16].
Some analytical derivations also suggest that, for high radial ITG mode numbers, the thermal
diffusivity is reduced with increasing magnetic shear [17]. The magnetic shear stabilization
function used by Zolotukhin et al [13] has the form G(s) = s−1.8. An additional threshold
dependence has been introduced by Pacher et al [15] into the magnetic shear stabilization
function G(s) = min(1, (s − sth))

−2. The threshold value sth is determined by calibration
with experimental data. The magnetic shear factor G(s) is not needed if the magnetic shear
stabilization effect is already included in the transport model, as it is in the Weiland model
used in this paper [18].

The combined magnetic and �Er × �B flow shear effect on the ion thermal transport has
been studied by Voitsekhovitch et al [19]. The proposed exponential shear functions have been
successfully used for the predictive analysis of some advanced tokamak scenarios with ITBs
on TFTR, DIII-D and JET tokamak devices. Both anomalous and neoclassical ion thermal
transport have been suppressed (in some cases to levels below the conventional neoclassical
level) in order to adequately reproduce the core evolution of the temperature.

A model for edge localized modes (ELMs) has been implemented recently in the JETTO
transport code. This work is described in a series of recent publications by Lönnroth et al
[20–22] as well as Onjun et al [23,24]. In the model in which ELMs are triggered by ballooning
or peeling modes, transport is computed using the JET transport (mixed Bohm/gyro-Bohm)
model. In contrast to the approach taken in this paper, the pedestal width is prescribed and the
ion thermal neoclassical transport at the top of the pedestal is used for all of the channels of
transport (even electron thermal transport) throughout the pedestal. The changes in the plasma
profiles during each ELM crash are produced by transiently increasing the transport in the
pedestal in that model.

Integrated modelling studies that self-consistently take into account the effects of the
plasma edge have been developing during the last decade [13–15, 20–28]. Some of these
simulations are rather comprehensive and take into account MHD equilibrium, turbulent
anomalous radial transport, neutral gas transport, atomic and molecular physics and plasma–
wall interactions. At the same time, many open questions remain. Examples of such questions
are: How are the different short and long wavelength modes suppressed by the �Er × �B flow
shear? Is there a single model for flow shear suppression of transport in the plasma core and
at the plasma edge? How does the H-mode pedestal recover after an ELM crash? What is the
effect of ELMs on the pedestal characteristics? With the issue of particle transport left aside
for future work, this paper will address some of these questions, namely the issue of anomalous
thermal transport suppression, formation of the pedestal, L–H transition, triggering of ELMs
and the effect of ELMs on the pedestal characteristics.
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This paper is organized in the following manner. In section 2.1, a model for the H-mode
pedestal is introduced. The model is based on the �Er × �B flow shear suppression of anomalous
thermal transport. A description of the ELM triggering criteria is given in section 2.2. Two
triggering mechanisms are considered: ELM crashes are caused either by ballooning mode
instabilities or by peeling mode instabilities. The combined model for the H-mode pedestal
and the ELMs has been implemented in the ASTRA transport code [29] and is used in this
paper to predict the L–H transition, the height, width and shape of the H-mode pedestal, as
well as the frequency of ELMs. Section 3 contains a description of the implementation and
includes results of simulations of a reference case. The reference case has plasma parameters
and geometry appropriate for a DIII-D discharge [30]. Results of simulations, in which the
plasma density, magnetic field and heating power are varied, are presented in section 4, and
the derived scalings are compared with experimental observations. Discussion of the results
and conclusions are presented in section 5.

2. Combined model for H-mode pedestal and ELM crashes

2.1. Suppression of anomalous thermal transport due to the �Er × �B flow shear

A model is described in this section for the suppression of anomalous transport by the
�Er × �B flow shear. The objective is to develop a model for the flow shear suppression
of anomalous transport at the plasma edge and for triggering ELM crashes. When the models
for the anomalous transport suppression, which are described in the introduction of this paper,
are compared, it can be seen that suppression rates in equations (4) and (5) resemble the
Hamaguchi–Horton suppression rate in equation (2). The flow shear suppression function in
the form given by equation (5) was used to model the formation of edge transport barriers
(ETBs) by Zolotukhin et al [13] and Janeschitz et al [14]; whereas, the suppression rate in
equation (2) was used to predict the formation of ITB [9]. However, the shear suppression
model used to describe the formation of edge barriers was not extended and applied to the core
and, similarly, the model used to describe the formation of ITBs was not extended and applied
at the plasma edge. As noted above, the intent of this study is to derive a shear suppression
function suitable for the entire plasma profile in order to use the derived shear suppression
function in a predictive integrated modelling code. While it is desirable to have a single
suppression function that allows the description of internal and external transport barriers,
note that the core and edge turbulence may be in different regimes (quasi-linear versus strongly
non-linear), and it may be necessary to use different shear functions for stabilizing different
modes.

Different drift instabilities are suppressed by the �Er × �B flow shear at different rates. For
example, short wavelength ETG modes are almost unaffected by the flow shear, while longer
wavelength ITG and TEM modes are strongly suppressed by sufficiently high levels of flow
shear [3]. Consequently, it is important to separate the contributions of the different instabilities
that drive anomalous transport. In the Multi-Mode transport model [18], the contributions to
transport resulting from the ITG and TEM modes, kinetic ballooning and resistive ballooning
modes are all computed separately. The ITG and TEM thermal diffusivities, χ

(j)

TGM, which
are referred to as drift temperature gradient driven modes (TGM) later in this paper, are
computed with the Weiland model [18, 31, 32]. The Weiland model uses the quasilinear fluid
equations with magnetic drifts for each plasma species and takes into account finite Larmor
radii, collisions, finite β, electromagnetic effects, impurities and fast ions. The Guzdar–Drake
model [33] is used for the computation of resistive ballooning diffusivities, χ

(j)

RB . The Multi-
Mode model also uses a simple analytical expression for computation of the kinetic ballooning
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instabilities, χ(j)

KB. The contribution from the ETG mode is not part of the original Multi-Mode
model, but these modes can be important because there is minimal suppression of the modes
by the �Er × �B flow shear. The Horton model [34], which is based on a hydrodynamic theory of
short wavelength drift turbulence with electromagnetic effects, can be used for the computation
of the ETG thermal diffusivities, χ

(j)

ETG. Both the Multi-Mode transport model and the Horton
model are calibrated against experimental data and each model has its own calibration constant.
Neoclassical thermal contributions, χneo, are computed using the NCLASS module [35]. It
should be noted that in the pedestal region, where the plasma gradients are very steep, the
characteristic scale lengths of the temperatures and densities are of the order of the ion banana
width and conventional neoclassical theory is close to the limits of its applicability. While
it might be important for future integrated predictive transport modelling to enhance the
neoclassical theory by inclusion of various effects intrinsic to the pedestal physics, such as
the effects of the short gradient scale lengths and more frequent collisions with neutrals from
the first wall, recent comparisons between theoretical predications and the observed transport
in the H-mode pedestal in the DIII-D tokamak have shown that the conventional neoclassical
theory is in reasonable agreement with the experimental data [3].

In order to take into account that different instabilities are suppressed by the �Er × �B flow
shear at different rates, separate shear suppression functions F

(j)

l are used. The contributions
from the different instabilities together with the neoclassical thermal diffusivity, χneo, constitute
the total ion and electron thermal diffusivity:

χi = F
(i)
TGMχ

(i)
TGM + F

(i)
RBχ

(i)
RB + χ

(i)
KB + χ(i)

neo, (6)

χe = F
(e)
TGMχ

(e)
TGM + F

(e)
RBχ

(e)
RB + χ

(e)
KB + χETG + χ(e)

neo, (7)

where

F
(j)

l = 1

1 + α
(j)

l (ωE×Bτlj )2
, l = (TGM, RB), j = (ions, electrons) (8)

and where χ
(j)

l is the anomalous thermal diffusivity; τlj is the turbulence correlation time,
which is estimated as τlj = L2

l /χ
(j)

l . The coefficients α
(j)

l are calibrated in section 3. Ll

is the turbulence characteristic scale length. For the TGM modes, LTGM is set equal to the
gyro-radius ρs, and for the resistive ballooning modes, LRB is defined as [36]

LRB = 2πq(a)R

(
2ne2η‖ρs

me�e
√

2RLn

)1/2

, (9)

where q(a) is the safety factor at the plasma edge, η‖ is the classical resistivity, �e is the
electron gyro-frequency and Ln = −dr/d ln n is the scale length of the density gradient.
Note that the shear suppression function given by equation (8) does not include the magnetic
shear stabilization term included in equation (5). The Weiland model for the TGM modes
already includes the effect of magnetic shear. Furthermore, Figarella et al [12] showed that the
formation of the H-mode pedestal, for the case of resistive ballooning turbulence and varying
biasing field, can be explained exclusively by the �Er × �B flow shear suppression. It should
be noted, however, that the magnetic shear profile was not changed in that study in order
to demonstrate that magnetic shear does not play a significant role in the formation of the
pedestal. Finally, as noted in the Introduction, a separate magnetic shear stabilization factor
is not needed, since magnetic shear stabilization is already part of the Weiland model used in
this paper [18]. In this study, the formation of an ETB, employing only suppression resulting
from the �Er × �B flow shear, is tested for one magnetic geometry.
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The radial electric field, Er , which determines the �Er × �B shear rate given by equation (1),
is computed from the first order radial force balance equation:

Er = 1

Zieni

∂pi

∂r
− vθBφ + vφBθ , (10)

where vθ and vφ are the poloidal and toroidal velocities, respectively. The neoclassical
expression for the poloidal rotation velocity in collisionless regime is used [37]:

vθ = 0.8839fc

eZi(0.3477 + 0.4058fc)

Bφ

B2

∂Ti

∂r
, (11)

where fc = 1.−1.46ε1/2 +0.46ε3/2 is the average fraction of circulating particles and ε = r/R

is the aspect ratio. The toroidal rotation velocity is taken from experimental data in the studies
described in sections 3 and 4.

2.2. Model for ELMs

ELMs are among the determinant factors at the plasma edge that affect the whole plasma
profile, since up to 10% of the plasma energy can be removed by a single ELM crash. An ELM
crash can be initiated either by a pressure driven ballooning instability or by a current driven
peeling instability [38–40]. A ballooning instability causes an ELM crash if the normalized
pressure gradient, α, exceeds a critical value, αcr, at any location within the pedestal region.
The normalized pressure gradient in an arbitrary geometry can be defined as

α = µ0

2π2

∂p

∂ψ

∂V

∂ψ

(
V

2π2R

)1/2

, (12)

where V is the plasma volume and ψ is the poloidal flux. This expression reduces to the
conventional definition in the cylindrical geometry

α = −2µ0R
( q

B

)2
(

dp

dr

)
. (13)

Parametrized dependencies for the stability threshold are generally used in transport codes,
rather than determining the critical value by using a comprehensive MHD stability analysis
code. In this study, it is assumed that the plasma is in the first ballooning stability region. An
ELM crash occurs when α exceeds αcr, where the value of αcr is computed using the analytic
expression [25]

αcr = 0.4s
(
1 + κ2

95(1 + 5δ2
95)

)
, (14)

where s is the magnetic shear, κ95 and δ95 are the elongation and triangularity at the 95% flux
surface. A different expression for αcr would be appropriate if the more general expression for
α given by equation (12) were used. This value for αcr is likely to be somewhat lower.

A peeling instability causes an ELM crash if the following condition is satisfied [41]:

√
1 − 4DM < Cκ

[
1 +

1

πq ′

∮
µ0J‖B
R2B3

p

dl

]
, (15)

where DM is the Mercier coefficient proportional to the pressure gradient, Bp is the poloidal
component of the magnetic field, q ′ is the derivative of the safety factor with respect to the
poloidal flux and Cκ is the coefficient that is introduced in order to reproduce the stabilizing
effects of the vacuum region and plasma shaping. The combined effects of ballooning and
peeling criteria are shown as a schematic diagram in figure 1. The part of the curve to the left
of point A in figure 1 represents the peeling mode stability criterion given by equation (15);
the part of the curve beyond point A represents the ballooning mode stability criterion.



Combined model for the H-mode pedestal and ELMs 7

Figure 1. Schematic diagram of an ELM crash. The stable region ① separates two unstable
regions ② and ③. In the region ②, the ELM crashes are caused by the ballooning instability; in the
region ③, the ELM crashes are caused by the peeling instability. The ballooning–peeling threshold
is shown as a function of the parallel component of current density, j|| and the normalized pressure
gradient, α. In general, the parallel component of plasma density destabilizes both the ballooning
and peeling modes, and the pressure gradient stabilizes the peeling mode and destabilizes the
ballooning mode.

In the current model, it is assumed that as soon as either the ballooning or the peeling
mode criterion is satisfied at any point within the pedestal, an ELM crash occurs. Compared
with the characteristic transport times, an ELM crash is an almost instantaneous event. During
an ELM crash, plasma is removed from the edge region, which is typically several times wider
than the width of the H-mode pedestal. In order to model the effect of an ELM crash, the plasma
pressure is reduced by 70% in the ELM region. The changes in the plasma profiles caused
by an ELM crash are computed in between the transport time steps. The transport model is
not changed by the ELM crashes and the transport coefficients and fluxes are computed self-
consistently from the transport model during the transport time steps. An alternative approach
is used by Lönnroth et al [20–22,42] and by Onjun et al [23,24], in which the edge transport is
transiently increased by a large amount in order to produce the rapid changes in the edge plasma
profiles produced by each ELM crash. In this paper, each ELM crash is an instantaneous event
on the transport time scale.

The width of the ELM region, �ELM, is computed using an empirical scaling for the
plasma energy removed by an ELM crash [38, 39]

�ELM ∝ C�

(
�W

∇pcrit

)0.5

, (16)

where �W is the energy loss during an ELM crash and C� is a fitting coefficient. Since
C� depends on the minor and major radii, it can be considered to be a constant for any
specific device. For the ASTRA simulations of the DIII-D tokamak, C� is set to 0.1. The
energy loss during an ELM crash is calculated using an empirical expression that has been
obtained from analysis of the DIII-D data [43]:

�W ∝ W

(
S

Pheat

)0.38

B−0.31
T . (17)

where S is the plasma area, Pheat is the auxiliary heating power and W is the plasma energy.
The model used by Lönnroth, Onjun and others in the JETTO code is different, and in

some ways similar, when compared with the model used in the ASTRA code in this paper. The
same peeling mode stability criterion is used both in the ASTRA and JETTO codes. The width
of the pedestal is computed self-consistently using flow shear stabilization of the anomalous
transport in the ASTRA code while the width of the pedestal is prescribed in the JETTO code
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in [20–24]. In the ASTRA model, electron thermal transport is computed from the anomalous
transport that remains (mostly from the ETG mode) after flow shear stabilization of the longer
wavelength modes of turbulence, while in the JETTO model, electron thermal transport in the
pedestal has been assumed to be equal to the neoclassical ion thermal transport computed at
the top of the pedestal. Finally, the changes to the profiles caused by each ELM crash are
implemented in different ways in the ASTRA and JETTO codes.

3. Testing the model with the ASTRA code

The models described above, for the reduction of anomalous transport in the pedestal and for
the triggering of ELM crashes, are implemented in the ASTRA v. 5.2 (Automated System for
TRansport Analysis in a tokamak) transport code [29]. The four α

(j)

l coefficients in equation (8)
can be used to calibrate the model.

During the initial step of the calibration, the objective is to reproduce major phenomena,
such as the formation of H-mode pedestal, L–H transition and pedestal reconstruction after
an ELM crash. The α

(j)

l coefficients should be large enough to suppress the transport at the
plasma edge region to a level that is sufficient for the L–H transition to occur. The pedestal
starts to form prior to the L–H transition. The values of the α

(j)

l coefficients that are necessary
for the transition are higher than the values that are required for the pedestal formation. In
addition, the ELM frequency is controlled through the calibration of the α

(j)

l coefficients. If
the coefficients α

(j)

l are small, the normalized pressure gradient, α, does not exceed the critical
value αcr (see equation (14)), and the ballooning criterion for an ELM crash is not violated.
With larger values of the α

(j)

l coefficients, the ELMs can be triggered more readily by the
ballooning instability. Consequently, the ELM frequency is increased as the α

(j)

l coefficients
are increased. (Of course, this logic does not necessarily apply to the ELMs that are triggered
by the current driven peeling instability.) At the same time, the coefficients should not be so
large that the anomalous transport is completely suppressed everywhere in the plasma. These
limitations provide upper and lower bounds for the α

(j)

l coefficients.
The second step of the model calibration consists of the adjustment of the coefficients

α
(j)

l in accordance with observed experimental dependencies and trends. For example, the
ion temperature, in most cases, is observed to be higher than the electron temperature. This
provides an additional constraint on the α

(j)

l coefficients. The model developed in this paper
results from applying the first two steps of the calibration process. Some preliminary results of
the model calibration that are associated with matching experimental dependencies and trends
are discussed in section 4.

During the third step of model calibration, fine tuning of the α
(j)

l coefficients can be
carried out. At this stage, the calibrated model is expected to reproduce the experimental
plasma profiles in the plasma core and edge for different types of discharges and for different
tokamak devices. This third step in the calibration of the model is beyond the scope of this
paper.

A reference scenario for ASTRA simulations is based on the parameters of a DIII-D
discharge [30]. Profiles from an analysis simulation of experimental data that are given in
figure 2 are used. In particular, data are used for electron, ion and impurity density profiles
(see figure 2(a)), toroidal rotational velocity, Zeff (see figure 2(b)), the current density driven
by the neutral beam injection (NBI) heating (see figure 2(c)), and the auxiliary heating power
deposited to electrons and ions (see figure 2(d)). These profiles are prescribed and fixed in
form. The experimental radial profile of total current density is used as an initial condition for
the magnetic diffusion equation, which is solved in the ASTRA code. Other input parameters
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(a) (b)

(c) (d)

ef
f

Figure 2. Profiles from an analysis simulation of experimental data, which are used in the
simulations with the ASTRA code: (a) electron, ion and impurity densities, (b) Zeff , (c) the current
density driven by the NBI heating and (d) auxiliary heating power deposited to electrons and ions.

are the following: minor radius a = 0.61 m; major radius R = 1.68 m; toroidal magnetic field
BT = 2.10 T; plasma current I = 1.54 MA; line average density 〈ne〉 = 4.84 × 1019 m−3;
elongation κ = 1.82 and triangularity δ = 0.6. The NBI auxiliary heating power deposited to
electrons and ions in the simulation is increased from 1 MW to approximately 6 MW at 0.06 s,
as shown in figure 3.

In the ASTRA simulation, the electron and ion temperatures are observed to increase after
the heating power increases and the transition from L- to H-mode is observed at about 0.07 s.
Also, the H-mode pedestal is formed at this time in both the electron and ion temperature
profiles.

The radial electric field in the ASTRA simulation increases towards the edge of the plasma,
reaching a maximum within the pedestal region and decreasing at the plasma edge. This sharp
maximum has also been observed in experiments [44] and in numerical simulations [45–47].
The sharp peak in the radial electric field produces sufficiently high values of ωE×B flow shear
rates to provide the necessary condition for the transition from the L- to the H-mode. Figure 4
shows the profile of the radial electric field and the �Er × �B flow shear during the L-mode and
the H-mode stages in the simulation. No bifurcation of the radial electric field in time during
the discharge of the L–H transition is observed, which is consistent with the results of the
numerical simulation [45, 46].

The L-mode is characterized by a large fluctuation level at the plasma edge. Large transient
coherent structures are observed in the experiments [48]. The L–H transition occurs when the
velocity shear becomes strong enough and the condition ωE×B > γmax is satisfied. While
this condition agrees with the �Er × �B flow shear suppression function that is used in this
study, a strong velocity shear can develop as a result of fast MHD activity, which is not
always captured by transport codes. Moreover, transport codes usually do not handle coherent
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Figure 3. The NBI heating power absorbed by the ions and electrons as a function of time is shown
in the top panel. The electron and and ion temperatures from the ASTRA simulation are plotted
as a function of time at the plasma centre and at r/a = 0.95 in the centre and bottom panels,
respectively.

structures observed in experiments during L-mode. These structures are beyond the spatial
and temporal scales that transport codes can resolve. Transport simulation can follow the L–H
transition, but can not reproduce the sharp L–H transition in detail.

The total radial electric field (solid curve in the top panel) in figure 4 is used in the
computation of the �Er × �B flow shear rate (shown in the bottom panel), which, in turn, is used
for the computation of the flow shear suppression functions for the ITG/TEM and resistive
ballooning modes. (Note the difference in coordinate scale between the L-mode and the
H-mode Er plot.) In figure 4, the magnitudes of the diamagnetic (dashed curve) and poloidal
(dotted curve) contributions to the total radial electric field are also shown. These contributions
to the total electric field correspond to the first and second terms in equation (10). The sharp
increase in the total radial electric field at the plasma edge is mainly the result of the diamagnetic
contribution. At t = 0.155 s, the maximum radial electric field near the plasma edge during
the H-mode stage is about three times the value of the radial electric field at t = 0.001 s, during
the L-mode stage. As a result, the gradient dEr/dr , which is involved in the calculation of the
ωE×B flow shear rate (see equation (1)), is approximately two times larger during the H-mode
than during the L-mode.
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Figure 4. The radial electric fields and the ωE×B flow shear rate during the L-mode and the
H-mode. The magnitudes of the diamagnetic (- - - -) and poloidal (· · · · · ·) components of the
total radial electric field (——) are shown. These components correspond to the first and third
terms in equation (10). Note that signs of these two terms in equation (10) are not included in this
figure.

The resulting flow shear suppression functions, and their effect on the ion thermal
diffusivities, are shown in figure 5. It is seen that without flow shear suppression (top panels),
the resistive ballooning and the ITG contributions to the total ion thermal diffusivity do not
change significantly from L- to H-mode. However, when flow shear suppression is taken into
account (bottom panels), the resistive ballooning mode is suppressed more strongly in the
H-mode than in the L-mode stage of the discharge. As a result, the resistive ballooning mode
contributes less to the transport near the edge of the plasma in the H-mode than in the L-mode.
Since the resistive ballooning mode usually contributes most at the plasma edge, the total
thermal diffusivity is strongly reduced at the plasma edge in the H-mode and, consequently,
temperature gradients become steeper and form a pedestal.

Each ELM crash in the model is considered as an instantaneous event, while recovery
from each crash is an extended phenomena. Figure 6 shows the recovery from an ELM crash
that occurs at 0.2005 s in the simulation. The profile is completely recovered and exhibits the
H-mode pedestal at 0.2083 s. Note that the width of the region affected by ELMs is computed
from the empirical relation given by equation (16) and, for the case shown in figure 6, the ELM
width is about eight times wider than the H-mode pedestal width. The temperature profile in
the plasma core is reduced somewhat while the pedestal rebuilds between ELM crashes.

Figure 7 shows the evolution of the bootstrap current as a function of normalized pressure
gradient between two ELM crashes. The points represented by squares indicate the bootstrap
current density and the circles represent the critical pressure gradient. Each pair of points
represents a different time in the ELM cycle: points A and A′ represent the first time step in
an ELM cycle; points D and D′, the time just prior to the next ELM crash and points E and E′,
the time just after the next ELM crash. The unprimed points represent the bootstrap current
density and the primed points represent the value of the critical normalized pressure gradient,
αcr, associated with each time point during an ELM cycle. As the normalized pressure gradient
increases from 3 to 11 along the horizontal axis and the bootstrap current density increases from
0.05 to 0.37 MA m−2 along the vertical axis, the critical pressure gradient varies slightly, in
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Figure 5. Radial profiles of ITG (——) and resistive ballooning (- - - -) ion thermal diffusivities
without flow shear suppression in L-mode and H-mode (top panel); shear suppression functions
for ITG (——) and resistive ballooning (- - - -) thermal transport (middle panel) and the resulting
thermal diffusivities after including the �Er × �B flow shear suppression (bottom panel).

Figure 6. Ion temperature radial profile recovery after an ELM crash. Lower solid curve shows
the temperature profile at the next time step after an ELM crash. Dashed and dotted curves show
different stages of profile recovery after the crash. The upper solid curve shows the ion temperature
profile completely recovered after an ELM crash.

the range from 11 to 11.7. At a time just beyond the time associated with point D, the pressure
gradient in the edge region exceeds αcr and an ELM crash occurs, resulting in the values of
jbs and α rapidly changing from those at point D to those at point E. The critical value of the
normalized pressure gradient depends on the value of the magnetic shear in accordance with
equation (14), which indirectly depends on the bootstrap current.

4. Initial comparison of simulations with experimental scalings

In this section, the results of the simulations are compared with observed experimental
dependencies and trends. Agreement with experimental trends can provide some of the
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Figure 7. Illustration of the variation of bootstrap current ( ) and critical plasma pressure
gradient (◦) between two consecutive ELM crashes. Each pair of points represents different
time during an ELM cycle: points A and A′ represent the first time step during an ELM cycle;
points D and D′, the time prior to the next ELM crash; points E and E′, the time just after the next
ELM crash. The primed points represent the value of the critical pressure gradient for a specific
time, and the unprimed points represent the bootstrap current density.

(This figure is in colour only in the electronic version)

necessary justification for the assumptions used in the model. In this paper, scans with heating
power, magnetic field and plasma density are considered. In the reference scenario, all ELM
crashes are caused only by the ballooning instability, even though both ballooning and peeling

AQ2

criteria are implemented in the ASTRA code. The simulations with both criteria implemented
are rather slow, because a detailed equilibrium computation with small time steps is required for
the peeling condition given in equation (15). Consequently, in the scans that are considered
in this section, only the ballooning condition is used to trigger ELM crashes. An example
of a simulation with both the peeling and the ballooning conditions included is presented
in section 5. Another possible model is one in which the equilibrium evolves along the αcr

boundary until j > jcr and the peeling mode is triggered.

4.1. Scan with heating power

In the scan over auxiliary heating power, the auxiliary heating power is varied from 3.5 to
7.0 MW in a series of simulations. In figure 8, the electron, ion and average electron–
ion, (Te + Ti)/2, temperatures at the top of the pedestal just before an ELM crash and the
ELM frequency are shown as a function of the auxiliary heating power. The ELM frequency
is observed to increase with the heating power in the simulations, which is consistent with
experimental observations in H-mode plasmas with type I ELMs. The temperatures at the top
of the pedestal have a weak dependence on the heating power in the simulations. For example,
as shown in figure 8, the simulation result scaling, that describes the dependence of the average
pedestal temperature on heating power, is given by

Te + Ti

2
∝ P 0.18

heat . (18)

This result is consistent with experimental observations, where it is found that

Tped ∝ P α
heat, (19)
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(a) (b)

Figure 8. Pedestal temperatures and ELM frequency in the heating power scan. The dotted lines
in panel (a) show the power dependence scaling curves that provide the best fit to the simulation
results.

with α in the range 0.0 � α � 0.5. The ELM crash frequency is observed to increase with
increasing auxiliary heating power (see figure 8(b)). If the ELM crashes are triggered by a
critical pressure gradient that is proportional to the magnetic shear in the pedestal, then the
temperature at the top of the pedestal slowly increases with increasing heating power. The
reason for this effect is that the current density in the pedestal has less time to rebuild between
ELM crashes as the ELM crashes become more frequent, and, consequently, the magnetic
shear, s, and the critical pressure gradient, αcr, remain at high levels in the pedestal between
ELM crashes. The critical pressure gradient, αcr, increases during each ELM crash because
of its dependence on the magnetic shear, s. Each ELM crash removes most of the bootstrap
current density from the pedestal. As a result, the current density in the pedestal decreases
after each ELM crash and then increases as the bootstrap current rebuilds before the next ELM
crash. The magnetic shear in the pedestal, which is inversely related to the current density,
increases after each ELM crash and then decreases before the next ELM crash. Consequently,
αcr increases slightly and then decreases slightly during each ELM cycle. Since inductive
effects impede the rebuilding of the pedestal current density, the normalized pressure gradient,
α, can rebuild much faster than the increase in the pedestal current density and the resulting
decrease in αcr. That is why the critical pressure gradient, αcr, remains at a higher level when
ELMs are more frequent.

As the heating power is increased, the heat flux through the pedestal increases and the
pressure gradient in the pedestal rebuilds more rapidly between ELM crashes. Consequently,
there are more frequent ELM crashes at higher heating power, and, for the reasons described
earlier, the critical pressure gradient, αcr, increases moderately. The higher value of the critical
pressure gradient implies that the plasma pressure and temperature can reach higher values
before an ELM crash occurs. This effect is demonstrated in figure 9, which shows the evolution
of the ion temperature and bootstrap current density at 0.95 of the minor radius. Figures 9(a)
and (c) correspond to the case of the lower heating power (3 MW) and lower ELM frequency
and figures 9(b) and (d) correspond to the case of the higher heating power (11 MW) and higher
ELM frequency, where the current density in the pedestal region does not rebuild completely
between successive ELM crashes.

4.2. Scan with magnetic field

In the magnetic field scan, the magnetic field is varied from 2.1 to 4.6 T. Since the safety factor
is fixed in this scan, the poloidal and toroidal components of the magnetic field are varied in the
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(a) (b)

(c) (d)

Figure 9. Evolution of the ion temperature and bootstrap current density at 0.95 of the minor radius
for lower (a) and (c) and higher (b) and (d) total heating powers.

same way. The pressure gradient would remain fixed if the normalized pressure gradient, α,
were fixed in this scan. The dependencies of the electron and ion pedestal temperatures, and
the ELM frequency on the magnetic field are shown in figure 10. It can be seen in figure 10(a)
that the pedestal temperature slowly increases as the magnetic field increases. This result is
consistent with the weak B0.32

T scaling found in the empirical fit to experimental data in [49]
for type-1 ELMy H-mode discharges when the plasma current is held fixed (as is the case in
this simulation scan). The dependence of the pedestal temperature on the magnetic field in
the simulations results from the pedestal width dependence on the magnetic field, which is
observed in this scan. The pedestal width decreases with the magnetic field. This leads to
higher values of magnetic shear at the top of the pedestal, and consequently to higher values
of critical pressure gradient, αcr. This explanation is valid as long as the plasma is in the
first ballooning stability limit. In the second ballooning stability limit, the dependence of
the ballooning instability threshold, αcr, on the magnetic shear is reversed and the pedestal
temperature will decrease with the magnetic field.

Figure 10(b) shows the dependence of the ELM frequency on the magnetic field. The
ELM frequency decreases with increasing magnetic field, a trend similar to the one observed
in experimental data. This observation has a simple explanation. Since the neoclassical
transport, which is inversely proportional to the square of the poloidal magnetic field, is a main
transport mechanism within the pedestal, the pedestal can recover faster after each ELM crash
in plasmas with stronger poloidal magnetic field compared to the recovery in plasmas with
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Figure 10. Simulation results showing the dependence of pedestal temperatures and frequency of
ELM crashes on the magnetic field.

weaker magnetic field. Also, the anomalous transport will be weaker when the magnetic field is
stronger. In particular, the resistive ballooning thermal diffusivities are inversely proportional
to the square of the toroidal magnetic field:

χ
i,e
RB ∝ q2

B2
φ

.

As a result, the ELM frequency is higher in a stronger magnetic field plasma.

4.3. Scan with plasma density

Experimental observations indicate that pedestal characteristics are strongly dependent on
the plasma density. It is observed that the electron and ion temperatures at the top of the
pedestal decrease with increasing plasma density. Different experiments suggest different
plasma density scalings, but all the scalings are in the range

Ti,e ∝ 1

nα
e

, (20)

where α ≈ 1 [25]. Also, the frequency of ELMs is observed to increase with the plasma
density [50]. In a series of ASTRA simulations, the plasma density is changed from
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Figure 11. Pedestal temperatures and frequency of ELM crashes in the density scan. Dotted lines
in panel (a) show two curves that fit the average temperature at the top of the pedestal in the limits
of low and high densities.

0.6 to 2.0 times the reference density used in the simulations described earlier, nref
e ≡ 〈ne〉 =

4.84 × 1019 m−3. The simulation results shown in figure 11 indicate how the electron, ion
and average temperatures, (Te + Ti)/2, at the top of the pedestal vary with plasma density (in
panel (a)), and how the ELM frequency varies with the plasma density (in panel (b)). The
electron and ion temperatures have different scalings at low and high densities. The average
temperature at the top of the H-mode pedestal is found to vary with plasma density as

Te + Ti

2
∝ 1

n0.54
e

at lower densities: in the range from 0.6 to 0.8 of nref
e

and
Te + Ti

2
∝ 1

n0.89
e

at higher densities: in the range from 1.4 to 2.0 of nref
e .
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The values of the electron and ion temperatures at the top of the pedestal tend to become nearly
equal as the plasma density increases, as might be expected as a consequence of increased
collisionality. The scaling of the electron temperature changes more strongly than the scaling
of the ion temperature as the plasma density is increased. This might be caused by the effect of
ETG modes, which are not suppressed by the �Er × �B flow shear. It should be noted, however,
that the observed temperature scalings with the plasma density are likely to change somewhat
when particle transport is implemented.

The results of the simulations show that the ELM frequency decreases with increasing
plasma density, which is not consistent with experimental observations. This inconsistency
reveals two important limitations of the model in its present form. The first limitation is related
to the influence of the density profiles on the results. It is found that the simulations show
a strong dependence of the ELM amplitude and ELM frequency on the width of the density
pedestal and on the density gradients in the pedestal region. By doubling the width of the
density pedestal, the ELM frequency is reduced by a factor of two and the ELM amplitude is
increased by more than a factor of three. In this paper, the density profile is unchanged during
all the simulations; whereas, in some experiments, the density profiles are observed to change
more rapidly and more completely than the temperature profiles during each ELM crash. In
order to use the combined model for pedestal and ELMs in a more complete predictive transport
simulation, it is required that particle transport and the effect of ELM crashes on the density
profiles be implemented. A second limitation of the model, used to present the results in this
paper, is related to the expression for the critical value of the normalized pressure gradient
given by equation (14). This expression is valid in the first ballooning stability limit. It is
likely, however, that the plasma will move to the second stability region if the plasma density
is reduced, since that decreases the collisionality, which increases the bootstrap current and
decreases the magnetic shear in the pedestal [42]. This limits the applicability of this model to
the cases in which the parametrized dependence for αcr remains in the first ballooning stability
limit.

5. Discussions and conclusions

A new combined model for the pedestal and ELMs is presented. The model is used to self-
consistently compute the L–H transition, the pedestal width, height, shape, the frequency of
ELMs and the ELM amplitude. The width of the ELM crashes is taken from the empirical
scalings, and the conditions for ELM triggering are based on MHD stability analysis. The
model is tested using the ASTRA transport code. The formation of the H-mode pedestal
and the L–H transition is predicted as a consequence of the �Er × �B flow shear suppression
alone. No additional contribution due to the magnetic shear is used here; future comparison
calculations with differing magnetic configurations will show whether additional contributions
are required. A DIII-D discharge [30] is employed as a reference case and a pedestal model is
used to examine the dependence of the model results on plasma heating power, magnetic field
and density using simulations in which plasma parameters are systematically varied from the
reference case. The scalings obtained from the three scans are compared with the experimental
observations.

Both the peeling and ballooning criteria for ELM crashes are implemented in the ASTRA
code. However, a detailed equilibrium computation with small time steps and a reliable
equilibrium package are required for the peeling condition given in equation (15). As result,
simulations with both criteria for ELM crashes are rather slow. It has been verified using a
stability code that all ELM crashes are caused by the ballooning instability in the reference
scenario. Consequently, only the ballooning criterion is used in the plasma heating power,
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Figure 12. Evolution of the ion temperature at 0.95 of the minor radius in the ASTRA simulation
where ELMs are triggered by both the peeling and ballooning modes (minor radius a = 0.56 m,
major radius R = 0.77 m, toroidal magnetic field BT = 1.1 T and plasma current I = 1.538 MA).

magnetic field and density scans that are presented in this paper. However, the inclusion of
peeling trigger for ELM crashes can introduce new effects. An example of a scenario that is
observed in the ASTRA simulations, with both peeling and ballooning conditions included for
a low aspect ratio geometry and plasma parameters that differ from the geometry and plasma
parameters of the reference case, is shown in figures 12 and 13. In this example, an initial
ELM crash, caused by the ballooning mode instability, is followed by a series of frequent
ELM crashes, shown in figure 12, caused by the peeling mode instability. This is in contrast
to the sequence of ELM crashes described in figure 7 where the initial ELM crash resulting
from a ballooning instability is followed by a subsequent ELM crash resulting from the same
instability. Possible differences in sequences of ELM crashes are discussed below.

The pressure gradient decreases after an ELM crash caused by a ballooning mode
instability. If the decrease is such that the plasma returns to the stable region 1 shown in
figure 1, the pressure gradient rebuilds, and a subsequent ballooning mode ELM crash results,
as illustrated in figure 7. However, if the decrease in pressure gradient is sufficient, the plasma
can fall into the unstable region 3 in figure 1 where the condition for peeling instability given by
equation (15) is satisfied. As a consequence, an ELM crash caused by the peeling instability
follows immediately after the ELM crash caused by the ballooning instability. A series of
frequent peeling ELM crashes can be observed in the simulations. These crashes depend on
the evolution of the current density during the ELM crashes. When the edge current density
is reduced to a sufficiently low value so that the criterion for the peeling mode instability is
no longer satisfied, the pedestal pressure gradient rebuilds until an ELM crash results from the
ballooning mode instability.

Figure 13 illustrates a scenario involving multiple peeling crashes between two ballooning
crashes. The initial large ELM crash caused by the ballooning instability is followed by a series
of small and frequent ELM crashes caused by the peeling instability. There is a lower stability
limit value in the parallel component of the edge plasma current (about 0.2 MA m−2 for the
case shown in figure 13), which corresponds to the point B on the diagram shown in figure 1.
As soon as the edge plasma current density decreases below this value, there are no further
ELM crashes resulting from the peeling mode. Then the edge plasma pressure gradient
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Figure 13. Evolution of the bootstrap current and plasma pressure gradient at the top of the pedestal
between two consequent ELM crashes caused by the ballooning instability.

and the edge current density increases until the ballooning condition for an ELM crash is
attained. In this scenario, the period between two consequent ELM crashes that are caused by
the ballooning instability is much longer than if there were no peeling mode instabilities.

There are some natural limitations in transport codes. Transport models are extremely fast
and provide an excellent tool for predictive studies of tokamak plasmas. However, transport
codes deal with specific time and length scales and cannot completely describe very fast- or
very short-scale effects. While the ASTRA code is successfully used in this paper to model the
H-mode pedestal build up and to recover the plasma profiles after ELM crashes, it is difficult
to expect to be able to reproduce the details of the very fast ELM crashes. Also, transport
codes usually do not follow MHD modes and coherent structures that are observed in L-mode
experiments, which might be important for the L–H transition. Consequently, it is difficult
to reproduce the very sharp and fast L–H transition observed in experiments. However, the
bifurcational nature of L–H transition can be mimicked by introducing a threshold in the flow
shear suppression function given in equation (8):

F
(j)

l = 1

1 + α
(j)

l (ωE×Bτlj )2H(ωE×B − γ
lj
max)

, (21)

where H is the step function. This idea will be tested in future studies.
This study is a step in the development of a new refined model for the pedestal and

ELMs. In order to use the model within integrated predictive simulations, particle transport
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should be implemented in addition to the thermal transport. Of the scans considered in this
paper, the plasma density scan is expected to be affected the most from the inclusion of the
particle transport. This might resolve the observed discrepancies between the experimental
and simulated scalings of ELM frequency and electron and ion temperatures at the top of the
H-mode pedestal as a function of the plasma density. A more general stability criterion that
includes the first and second stability limits should be derived and used in the model for the
ELM trigger. Such a parametrization requires a detailed stability analysis. Finally, a calibration
of the model against experimental data will be the subject of future studies. However, at the
present stage of development, simulation results agree qualitatively with some experimental
dependencies. For example, by using the combined pedestal ELM model, it is found that the
temperatures at the top of the pedestal decrease with increasing plasma density and decreasing
heating power, and that the ELM frequency decreases with increasing magnetic field and
decreasing heating power.
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