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Abstract. The rich phenomenology of internal transport barriers (ITBs) observed in tokamaks

includes a poloidal spin-up precursor for balanced injection neutral beam heating and stepwise expan-

sion of the barrier for unbalanced injection. Examples of numerical simulations of these phenomena are

presented. Two drift wave based predictive transport models (GLF23 and multimode) are used. Both

models include the suppression of ion temperature gradient modes as the E × B shear approaches

the computed maximum linear growth rate. Modelling of discharges with ITBs from the DIII-D, JET

and TFTR tokamaks are compared.

1. Introduction

The ion temperature gradient (ITG) [1] and
trapped electron mode (TEM) [2] drift wave instabil-
ities have long been known to be unstable in tokamak
plasmas. Recent 3-D non-linear simulations of these
modes [3] have demonstrated that they can produce
the level of heat loss observed in experiments. These
non-linear simulations still require too much com-
puter time to be of practical use for comparisons
with more than a few experimental measurements.
The present state of the art is also limited in its abil-
ity to include electron temperature gradient (ETG)
drift waves [4] in the non-linear ITG/TEM simula-
tions since they exist at much shorter wavelengths
than the ITG/TEM modes. Drift wave based models
attempt to approximate the first principal theoreti-
cal calculations of stability and non-linear transport
in a computationally tractable model which can be
compared with a variety of experiments.

Here we report some of the recent success of drift
wave based transport modelling of internal transport
barriers (ITBs), i.e. in the region of the plasma where
at least the ion thermal transport has been reduced
to the neoclassical level. The term drift wave based
is used in this article to mean a theoretical model
which computes the linear growth rates of drift waves
locally and then computes the transport due to these

modes using quasi-linear theory and a model for
the saturated fluctuation amplitude. The two specific
models which fit this description are the multimode
model (MMM95), which pioneered this methodology
[5–7] using the Wieland–Nordman fluid model [8–
10], and the GLF23 model [11], which adopted the
same method but uses a gyro-Landau fluid [12] treat-
ment of the drift waves, including Landau damping
and other kinetic effects, rather than the fluid limit
employed by the Weiland–Nordman model. Both
models include the ITG mode and trapped electron
modes, which are the dominant contributors to ion
and electron thermal transport, particle transport
and ion momentum transport when they are unsta-
ble. These models have been shown to predict the
energy confinement quite well over a large database
of L mode and H mode tokamak discharges [13].

New physics must be added in order to model
discharges with ITBs. An ITB can be produced by
the suppression of ITG modes by E × B velocity
shear. The suppression of ITG mode turbulence by
equilibrium E × B velocity shear has been demon-
strated in 3-D non-linear numerical simulations [14].
The simulations were shown to approximately follow
a simple ‘quench rule’. The turbulence is quenched
(completely suppressed) when the E ×B shear rate
γE×B exceeds the maximum linear ITG mode growth
rate of the wavenumber spectrum γITG computed
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without E × B shear. The quench rule is not the
same as the simple linear stability rule for toroidal
modes [15]. Non-linear effects were found to shift the
quench point either above or below the point where
E×B shear causes linear stability in toroidal geome-
try. The non-linear decorrelation mechanism [16, 17]
was also found not to play a role, since the modes
were quenched for smaller values of the E×B veloc-
ity shear than would be required for the decorrela-
tion mechanism to even begin to have an effect. The
quench rule is implemented in the models by intro-
ducing a net growth rate

γnet = γITG − αE×BγE×B

which is set to zero when it is negative. The
multiplier αE×B is a constant of order one. This
mechanism has been shown to be consistent with
enhanced confinement regimes in tokamaks ranging
from H mode to VH mode to ITBs (for a review,
see Ref. [18]). Using simple models incorporating the
quench rule, much of the phenomenology of E × B

shear suppression of transport has been explored,
giving useful insight into experiments and leading to
new methods of controlling transport (for a review,
see Ref. [19]). In order to have a predictive transport
model incorporating the quench rule, the maximum
linear ITG mode growth rate must be computed.
Only then can the dependence of the transport sup-
pression threshold on the safety factor profile, the
Shafranov shift and many other important factors
be accurately modelled.

The drift wave based models use the linear growth
rate of both ITGs and TEMs in the quench rule. This
goes beyond established theory since the non-linear
simulations [14] were done only for ITG modes with
no trapped electrons. However, it is known from lin-
ear theory that trapped electron modes can be sta-
bilized by E ×B shear [20].

The two models are similar in their ITG and TEM
sectors but differ widely in the other contributions to
transport. The GLF23 model has ETG modes con-
tributing to electron thermal transport only. These
modes are not subject to the quench rule due to their
large growth rates. The multimode model has a for-
mula for kinetic ballooning modes which gives addi-
tional transport in all channels (both heat and par-
ticle) and is also not affected by E ×B shear. Thus,
the transport in the ITB region where ITG modes
and TEMs are quenched has quite different physics
in the two models. Both models are inadequate in one
way or another in modelling the transport within the
ITB as discussed below.

Three examples are given illustrating the ability
of the models to predict the onset and development
of ITBs in tokamaks. The first two have been pub-
lished elsewhere but the third is new. The first exam-
ple [21] is a multimode simulation of the evolution
of an optimized shear discharge on the JET toka-
mak. In this case the temperatures, density, q pro-
file, sources, sinks and neutrals were evolved with
multimode, but the toroidal rotation was taken from
the experimental data. The second case [22] is a
GLF23 simulation of a DIII-D discharge. Here the
toroidal rotation was evolved but not the density or
q profile. The sources and sinks were taken from an
ONETWO code analysis. The stepwise expansion of
the transport barrier is shown to result from compe-
tition between the toroidal rotation and diamagnetic
plus poloidal velocity contributions to the E × B

velocity. The third case is a modified GLF23 simula-
tion of a TFTR discharge. In this discharge a poloidal
spin-up precursor to the ITB was observed [23]. This
is reproduced by the model evolving the ion tem-
perature and E × B velocity in a very high resolu-
tion computation with a special numerical method
[24]. It is worth noting that drift wave based models
pose difficult numerical challenges. The quasi-linear
theory produces a flux of energy, particles and vis-
cous stress. The transport coefficients (of diffusivity
and convection velocity) can be defined in different
ways from these fluxes, which are strongly non-linear
functions of the profile gradients with cross-couplings
(off-diagonal terms) of similar strengths to those of
the diagonal terms. The multimode model example
was run on the BALDUR transport code [25]. The
two GLF23 examples were run on the XPTOR code1.
All three cases used different methods for defining
the transport coefficients from the fluxes.

2. Momentum transport

Before discussing the three cases, a new extension
of the momentum balance equations which determine
the E×B velocity will be presented. The neoclassical
equations for momentum transport are usually given
in terms of the toroidal ϕ and parallel ‖ momentum
balance equations [26] (〈 〉 = flux surface average),

1 The XPTOR code was written by J.E. Kinsey and G.M.
Staebler, making use of existing data handling packages writ-
ten by R.E. Waltz, J. Konings and G. Batemen and a trans-

port equation solver written by G. Hammett. The code uses
the MPI parallel library and is run on a Linux Beowulf cluster
built by J. Candy.
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∂

∂t
(miniuϕ) +

〈
(∇ ·ΠA − S) · êϕ R

R0

〉
= 0 (1)

where

uϕ = 〈V · êϕR〉/R0 (2)

and

∂

∂t
(miniu‖) +

〈[
(∇ · (Πneo + ΠA) − S

]
· B

B0

〉
= 0

(3)

where

u‖ = 〈V · B〉/B0. (4)

Here Πneo is the neoclassical collisional contri-
bution to the viscous stress, which vanishes in the
toroidal direction ϕ, and ΠA is the viscous stress
due to turbulence [20] plus the small classical colli-
sional gyroviscosity. The external momentum source
vector is S. The magnetic field B0 and major radius
R0 are evaluated at the magnetic axis. The inertia
terms have been neglected since they are small. The
neoclassical parallel viscous stress〈
∇ ·Πneo · B

B0

〉
= µneo

(
uθ −K

∂T

∂ρ

)
(5)

is usually assumed to be much larger than the con-
tribution from turbulence [26]. The parallel momen-
tum balance is also assumed to come to equilibrium
faster than the other transport equations. With these
orderings, the poloidal velocity

uθ = ρB0〈Vθ/Bθ〉/(R0q)

is determined by setting the neoclassical parallel vis-
cous stress (Eq. (5)) to zero. This ordering has also
been used in the first two examples in this article.
The E×B velocity uE×B = (c/B0)(dΦ/dρ) is deter-
mined from radial force balance to be

uE×B +
c

eB0ni

dpi
dρ

=
(
c2uθ − ρ

R0q
uϕ

)/
c3 (6)

where

c1 =
〈B2〉
B2

0

, c2 =
〈RBϕ〉
R0B0

, c3 =
〈R2〉
R2

0

. (7)

Using the neoclassical solution for the poloidal
velocity, the E × B velocity is eliminated using
Eq. (6) in terms of the three fields (uϕ, pi, ni) which
are evolved by the transport equations. One prob-
lem with this approach is that the quasi-linear fluxes
become functions of the second derivatives of the ion
temperature and density through the E × B shear.

This makes the transport equations third order in
the gradients, introducing the need for unphysical
boundary conditions [27]. If the ordering assump-
tions are relaxed so that the parallel momentum bal-
ance equation is on the same footing as the oth-
ers, then an equation for the time evolution of the
E×B velocity can be obtained [24]. The radial force
balance equation (Eq. (6)) is used to eliminate the
poloidal velocity in favour of the E × B velocity.
The toroidal and parallel momentum balance equa-
tions are then combined to obtain an equation with
only the toroidal and E ×B velocities using

ρ

R0q

(c1uϕ − c2u‖)
(c2

2 − c1c3)
= uE×B +

c

eB0ni

dpi
dρ

. (8)

The resulting equation is

∂

∂t

[
mini

(
uE×B +

c

eB0ni

dpi
dρ

)]
+

〈[
∇ · (ΠA + Πneo)− S̄

]
· êE×B

〉
= 0 (9)

where

êE×B =
ρ

R0q

(
c1

RBϕ

R0B0
êϕ − c2

B

B0

)/
(c2

2 − c1c3).

(10)

Using Eq. (9) keeps all of the turbulent fluxes
(and viscous stresses) first order in the derivative
of the time dependent fields (ni, pe, pi, uϕ, uE×B).
This equation was used only in the third example in
this article. It is required to model the strong devi-
ation from neoclassical poloidal flow observed in the
poloidal spin-up precursor.

3. Multimode model simulations

The multimode transport model is used in the
BALDUR time dependent predictive transport mod-
elling code to simulate the onset and time evolution
of ITBs in high performance JET and DIII-D dis-
charges [21]. These transport simulations compute
radial profiles as a function of time for the elec-
tron and ion temperatures, hydrogenic and impu-
rity ion densities, magnetic q value, sources and sinks
of heat and particles, and neutral particle densities.
Boundary conditions are taken from experimental
data just inside the separatrix or at the top of the
H mode pedestal, when that pedestal forms. The
toroidal velocity profile as a function of time is taken
from experimental measurements, while the poloidal
velocity profile is computed from neoclassical theory
[28].
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Figure 1. Ion temperature as function of time at equally spaced intervals in nor-

malized minor radius in (a) simulations and (b) experiment for JET discharge 40542

with major radius 2.9 m, minor radius 0.94 m, toroidal field 3.6 T, plasma current

3.3 MA, line averaged density 2.5×1019 m3 and 17 MW NBI heating. From Ref. [21].

The JET discharges are particularly complex:
the BALDUR simulations follow the transition from
ohmic to L mode, to the formation of an ITB, to
the transition to H mode (implemented as a time
dependent boundary condition in our simulations)
and then to the subsequent motion of the ITB. The
plasma current is ramped up while radiofrequency
and neutral beam injection pre-heating is used to
produce a broad current profile with low magnetic
shear over a broad central region of the plasma.

The time evolution of the ion temperature pro-
file for JET discharge 40542 is shown in Fig. 1, with
results from the simulation results shown in Fig. 1(a)
and the corresponding experimental measurements
shown in Fig. 1(b). The curves in this figure show the
ion temperature at equally spaced intervals in nor-
malized minor radius as a function of time. The top
curve in this figure represents the peak temperature
as a function of time, which is generally at or near the
magnetic axis, while the bottom curve represents the
lowest temperature, which is generally at the edge of
the plasma. ITBs are characterized by a wider spac-
ing between adjacent curves (steeper gradients). It
can be seen in Fig. 1 that an ITB forms near the
magnetic axis (close to the top curve) between 45.8
and 46.5 s in both the simulation (a) and the experi-
ment (b). The transport barrier then moves closer to
the edge of the plasma (lower curves) between 46.5
and 46.9 s in both simulation and experiment. Simi-
lar behaviour is observed in simulations of other high
performance discharges in JET and DIII-D [28].

The simulation shown here uses a recent version
of the multimode model with E × B flow shear
stabilization using the quench rule in the Weiland
model for drift modes that includes finite beta and
low magnetic shear effects, as well as the Bateman–
Scott model for drift Alfvén modes near the plasma
edge [7]. Similar results are obtained using the
Hamaguchi–Horton stabilization model that includes
the effects of low magnetic shear and high flow
shear [29]. In this Hamaguchi–Horton model, the
quasi-linear transport coefficients are divided by 1 +
(γs/γsc)2, where γsc ≈ 1 and

γs =
√

mi

Te

∣∣∣∣R∂ψ(Er/RBθ)
∂ψ ln q

∣∣∣∣. (11)

This model enhances the E × B shear suppres-
sion in regions of weak magnetic shear. Note that
the turbulence is reduced but not quenched in the
Hamaguchi–Horton model. In this simulation, each
of the three contributions to the E × B velocity
(Eq. (6)) have comparable magnitudes during the
formation and motion of the ITB. The flow shear in
the poloidal velocity (Uθ) contribution has a sharp
positive peak at the inner edge of the transport bar-
rier and a negative peak at the outer edge (as a func-
tion of minor radius). The peak value of flow shear
in the toroidal velocity (Uϕ) contribution (taken
from experimental measurements in this simulation)
remains at the outer edge of the ITB as the bar-
rier shifts outwards in minor radius between 46.0 and
47.5 s. The timing and location of the ITB transition
is sensitive to the multiplier αE×B in the quench rule.
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Figure 2. Time evolution of (a) electron temperature, (b) ion temperature and (c) toroidal

velocity predicted by the GLF23 model for DIII-D NCS discharge 87436. Values are shown

at various radii with a spacing of ∆ρ = 0.02. From Ref. [22].

This multiplier is known to vary with magnetic shear
and elongation from the non-linear simulations but is
taken to be a constant in the models. It has not been
possible to obtain a good fit to a variety of discharges
with a single value of αE×B. More non-linear simu-
lations are needed to develop a model for the para-
metric dependences in αE×B. The ITB threshold is
a critical test of the E ×B shear suppression model
and its dependence on local plasma conditions.

4. GLF23 simulation of
stepwise barrier expansion

The GLF23 transport model has been used to
dynamically follow E × B shear driven bifurcations
in the energy and toroidal momentum confinement
in DIII-D discharges with an ITB [22]. Taking the
density profiles, equilibrium, sources and sinks from
an ONETWO analysis, the simulations are initial-
ized with temperature and toroidal velocity profiles
scaled down from the experimental profiles (at a
given diagnostic time) to pre-barrier levels, and the
temperature and toroidal velocity profiles are evolved
while self-consistently computing the effects of E×B

shear stabilization using the model predicted profiles.
The ITB is predicted to form and expand in a step-
wise fashion, with the core temperatures and toroidal
rotation displaying an abrupt series of jumps during
the barrier formation and expansion. These results
are consistent with experimental observations. The
toroidal classical gyroviscosity is too small to be con-
sistent with the observed toroidal rotation profile
in the region where the ITG modes are quenched
by E × B velocity shear. The gyroviscosity was
enhanced to the level of the neoclassical ion ther-
mal diffusivity in these simulations. The cause of this
anomalous momentum transport within the ITB is

not explained by the GLF23 model or any existing
theory.

In Fig. 2, the dynamic formation of an ITB result-
ing from an E × B shear driven bifurcation is
demonstrated for a DIII-D negative central shear
(NCS) discharge with an L mode edge. Shown are
the ion temperature and toroidal velocity predicted
by the GLF23 model versus time. In the simula-
tions, the step transitions are a direct result of
local E × B driven transport bifurcations. At each
transition, dips in the electron temperatures and
toroidal velocity are clearly evident as the E × B

shear rate drops below the maximum linear growth
rate at the leading edge of the barrier. As a result,
E × B shear stabilization is transiently lost and
the local thermal and toroidal momentum transport
increases dramatically. The stiffness of the model
then results in rapid propagation of the perturba-
tion across the plasma core. Here, the dips are due
to competition between the toroidal and diamag-
netic plus poloidal velocity terms within the E ×B

shear rate, which frustrates the otherwise continu-
ous expansion of the ITB. The shear in the diamag-
netic plus poloidal terms has the opposite sign from
the toroidal rotation shear at the leading edge of
the barrier. Since the toroidal rotation term domi-
nates, a local increase in the ion temperature gradi-
ent reduces the net E × B shear at the front of the
barrier, which can cause a transient loss of E × B

shear suppression. A smooth ITB expansion is pre-
dicted for counter-NBI since the sign of the toroidal
rotation shear is now the same as the diamagnetic
plus poloidal velocity shear. Steps have not been
observed in counter-injected DIII-D discharges with
ITBs. The barrier expansion phase begins deep in
the core region where the drift wave transport is sta-
bilized by negative magnetic shear, high Ti/Te and
fast ion dilution, and the toroidal rotation dominates
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the E ×B shear. The ITB expands through a series
of step transitions until the positive magnetic shear
region is reached and the E × B velocity shear can
no longer exceed the rising ITG growth rate.

Overall, we find that both the height and the tim-
ing of the steps accompanying the expansion of the
leading edge of the barrier are sensitive to the prox-
imity to the E ×B shear driven ITB threshold and
the rate at which it is approached. The ITB threshold
is determined by the plasma conditions including, for
example, density and temperature gradients, auxil-
iary heating power and toroidal momentum input.
Time variations in the densities, q profile, sources
and sinks all have an impact on the character, tim-
ing and number of steps (if present) by changing the
growth rate and E × B shear profile. Here, those
quantities were held fixed in time and therefore we do
not attempt a quantitative comparison of the timing
of the steps with experimental data. There are other
mechanisms which could cause stepwise expansions
in the experiments, such as MHD instabilities slow-
ing the expansion across low order rational safety
factor surfaces. The modelling shows that the drift
wave physics can also produce stepwise expansion
dynamics.

5. Simulation of a
poloidal spin-up precursor

The third example is a simulation of a TFTR
discharge [23]. This discharge had reversed mag-
netic shear near the centre and made a transition to
enhanced confinement after the neutral beam power
was increased. The neutral beam power was balanced
for no net toroidal torque. Before the strong rise in
stored energy indicating the formation of an ITB,
a remarkably large poloidal velocity was observed to
develop in a very narrow layer, as shown in Fig. 3(a).
This is the poloidal velocity of carbon but the veloc-
ity is so large compared with the diamagnetic veloc-
ity that it is by far the dominant contribution to
the E ×B velocity. This poloidal spin-up precursor
grows up to its peak within the 20 ms integration
time of the measurement. It then decays away over
some 100 ms.

In previous work, an analytic model has been used
to show that this monopolar velocity excursion can
be fitted by a solution to the momentum balance
equations (Eqs (2) and (5)) called a jet solution [30].
The poloidal flow is generated by an instability of the
equations. When the E × B velocity shear is in the
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Figure 3. (a) Poloidal velocity of 6C ions measured for

TFTR discharge 104981 at 1.81 s (Fig. 2 of Ref. [23]).

(b) The E×B velocity computed with GLF23 at 1.824 s

modelling time for the same TFTR discharge.

range where the magnitude of the turbulent viscous
stress is dropping with increasing velocity shear, due
to the reduction of the drift wave turbulence, the
incremental viscosity (minus the derivative of the
viscous stress with respect to the E × B velocity
shear) is negative. A negative incremental viscosity
produces an instability in the poloidal velocity with
a growth rate that increases with the wavenumber of
the perturbation squared [24]. Owing to the presence
of the neoclassical viscous damping of the poloidal
velocity, this instability saturates at a wavenumber
determined by the ratio of the neoclassical collisional
damping rate to the incremental viscosity due to tur-
bulence. A narrow monopolar E×B velocity excur-
sion from its neoclassical value is the quasi-steady
state on the collisional damping rate timescale. This
steady state jet solution was shown to be a type of
topological soliton [30]. The integral of the velocity
excursion is topologically conserved.

A numerical solution of a modified version of
GLF23 has now been obtained for the same TFTR
discharge at 1.824 s, as shown in Fig. 3(b). Only the
ion temperature and E × B velocity were evolved.
The electron temperature profile was taken from the
experiment. It does not participate directly in the
determination of the E × B velocity. The sources
and densities, electron temperature, toroidal veloc-
ity, magnetic geometry etc. were interpolated in time
from a TRANSP analysis of TFTR discharge 104981.
The simulation was run from 1.79 to 1.85 s. A
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more complete discussion of the simulation shown
in Fig. 3(b) and the special numerical scheme used
will be reported in Ref. [24]. The toroidal veloc-
ity from the experiment was used but it does not
contribute to the narrow jet. A very fine grid was
used (300 grid points over the full radius). The time
step was 0.12 ms, which is shorter than the poloidal
damping time (3.9 ms) at the radius of the jet. The
E ×B velocity jet grew spontaneously in a few mil-
liseconds close to the same location as that observed
in the experiment. The growth rate begins to increase
rapidly with radius at this location. The jet solu-
tion persists for about 40 ms before decaying as
the experimental profiles evolve. The ion tempera-
ture shows some steepening at the location of the
jet. However, since the ion neoclassical thermal dif-
fusion is much larger than the collisional gyroviscos-
ity [31], the change in the E × B velocity gradient
is much larger than the change in the temperature
gradient. The analytic model [30] showed that the jet
solution shrinks and then disappears as the diamag-
netic velocity gradient increases. Once the diamag-
netic velocity gradient is large enough to quench the
turbulence no jet can exist.

The numerical simulation shows that the jet
is somewhat fluctuating with finer scale features
appearing and then disappearing. These finer scale
fluctuations are partially suppressed in the numeri-
cal scheme for numerical stability so the jet shown
in Fig. 3(b), which spans about 12 grid points, is in
effect averaged over the grid scale and the time step.
The measurement of the poloidal spin-up precursor
was primarily on just one channel and was averaged
over 20 ms. The spatial resolution is 3 cm [23]. It
may be that the poloidal velocity is not steady but
is bursty on timescales finer than the 20 ms integra-
tion time. The numerical simulation tends to have
this property with the bursts appearing in the same
localized region.

The agreement between the simulation and the
experiment in this case is only achieved by adjust-
ing the GLF23 model parameters. This departs from
the philosophy of the model since it has been con-
structed by fitting (growth rates and the saturated
fluctuations level) to theoretical calculations without
adjustments from experimental data [11]. In order
to obtain a good fit to the ion temperature profile
the fast ion and impurity dilution had to be elimi-
nated. The trapped electron mode was giving a large
ion energy pinch due to the hollow thermal ion den-
sity. The multiplier (αE×B) on the E × B shear
also had to be turned down significantly. The ion

temperature profile was well fitted with no E × B

shear term. The Shafranov shift was sufficient to
improve ion transport. This is consistent with the
fact that the experimental discharge has not yet
made the transition to enhanced confinement at this
time. The E × B shear was multiplied by 0.01 in
the simulation of Fig. 3(b). A larger value produces
a smaller amplitude jet and a value near one pro-
duces a transport barrier at a larger radius with-
out a jet. The computed growth rate in the region
of the jet was about 0.03 Cs/a (Cs=

√
Te/mi). This

would have to be increased to 3.0 Cs/a in order to
reconcile the jet solution with the standard quench
rule. Such a large growth rate is not likely for ITG
or TEM modes. Another possibility is that the pre-
dominantly TEM turbulence in this region does not
follow the quench rule. Rather, it could be sup-
pressed, but not totally turned off, by E ×B shear.
A power law suppression factor [16, 17, 29] would
allow the E × B velocity shear to greatly exceed
the linear growth rate without completely reduc-
ing the transport to neoclassical. A third possibil-
ity is that ETG modes produce some ion momentum
transport which is not included in the model. This
would allow the momentum diffusivity to decrease as
the E × B velocity shear increases well beyond the
local ITG mode growth rate to the much larger ETG
mode growth rate at short wavelengths. These are
open questions related to the well known inconsis-
tencies between the quench rule and experiment [19].
For example, quasi-linear theory predicts that ion
momentum and electron particle transport should
become neoclassical if the ITG modes and TEMs are
quenched by E × B shear. Experimentally, particle
and ion toroidal momentum transport are often not
reduced to neoclassical values within transport bar-
rier regions with neoclassical ion thermal transport.

6. Summary

Drift wave based transport models (multimode,
GLF23) have been used to simulate the evolution of
ITBs in a number of discharges from several toka-
maks. Three examples have been given in this arti-
cle. The models reproduce the onset and expansion
of the ITBs fairly accurately. The success of these
models is a confirmation of the ITG mode physics.
In the models, ITG modes dominate the ion ther-
mal and momentum transport prior to the forma-
tion of an ITB where E×B velocity shear quenches
the ITG mode. The exact timing of the barrier

Nuclear Fusion, Vol. 41, No. 7 (2001) 897



G.M. Staebler et al.

formation and the threshold power or torque
required are sensitive to the local plasma parameters.
Attempts to simulate a discharge close to a transport
barrier threshold can fail badly because the simula-
tion ends up on the wrong side of the threshold. This
makes it difficult to assess the statistical accuracy
of the models for discharges with transport barriers.
On the other hand, this same sensitivity makes the
threshold a strong test of the theory of ITG suppres-
sion by E×B shear. The modelling of experimental
discharges shows that the quench rule works well for
many cases but the data cannot rule out a power law
suppression model. In the case of the poloidal spin-up
precursor the standard quench rule does not appear
to work. The quench rule for ITG modes may still
be operative but the impact of E ×B velocity shear
on the remaining instabilities is an open theoreti-
cal question. There are still many unresolved issues
concerning tokamak transport. The ITBs provide
a laboratory where non-ITG transport mechanisms
can be studied. The transport due to ETG modes
in the GLF23 model has not been guided by non-
linear turbulence simulations and thus has a lower
level of confidence than that of the ITG modelling.
Non-linear simulations of the effect of E × B shear
on trapped electron mode turbulence are needed to
provide a stronger theoretical basis for the applica-
tion of the quench rule to these modes. The kinetic
ballooning model in multimode is primitive. These
modes could be included in the linear growth rate
calculations by improving the electromagnetic parts
of the models and extending the magnetic geometry
to shaped equilibria. The current state of drift wave
based modelling of ITBs is represented by the three
examples given in this article. The models are capa-
ble of reproducing interesting dynamical phenomena
such as stepwise barrier expansion and the poloidal
spin-up precursors. These milestones indicate that
the drift wave theory of tokamak transport is on the
right track.
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